Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
XRCC4 XRCC4 DCLRE1C DCLRE1C LIG3 LIG3 YBX1 YBX1 LIG4 LIG4 SUMF1 SUMF1 POLM POLM XRCC1 XRCC1 RPS21 RPS21 XRCC6 XRCC6 PRKDC PRKDC RPS3A RPS3A PARP1 PARP1 XRCC5 XRCC5 APLF APLF IRX5 IRX5 PARP2 PARP2 SLU7 SLU7 RECQL RECQL FBXO25 FBXO25 TOP1 TOP1 RPA1 RPA1 HIST3H3 HIST3H3 GMCL1 GMCL1 C4orf27 C4orf27 ARFRP1 ARFRP1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
POLMpolymerase (DNA directed), mu; Gap-filling polymerase involved in repair of DNA double- strand breaks by non-homologous end joining (NHEJ). Participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination (494 aa)
PARP2poly (ADP-ribose) polymerase 2; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks (583 aa)
RPA1replication protein A1, 70kDa; Plays an essential role in several cellular processes in DNA metabolism including replication, recombination and DNA repair. Binds and subsequently stabilizes single-stranded DNA intermediates and thus prevents complementary DNA from reannealing (616 aa)
XRCC1X-ray repair complementing defective repair in Chinese hamster cells 1; Corrects defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents (633 aa)
SUMF1sulfatase modifying factor 1 (374 aa)
FBXO25F-box protein 25; Substrate-recognition component of the SCF (SKP1-CUL1-F- box protein)-type E3 ubiquitin ligase complex. May play a role in accumulation of expanded polyglutamine (polyQ) protein huntingtin (HTT) (By similarity) (367 aa)
GMCL1germ cell-less, spermatogenesis associated 1; Possible function in spermatogenesis. Enhances the degradation of MDM2 and increases the amount of p53 probably by modulating the nucleocytoplasmic transport (By similarity). Probable substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (515 aa)
SLU7SLU7 splicing factor homolog (S. cerevisiae); Participates in the second catalytic step of pre-mRNA splicing, when the free hydroxyl group of exon I attacks the 3’- splice site to generate spliced mRNA and the excised lariat intron. Required for holding exon 1 properly in the spliceosome and for correct AG identification when more than one possible AG exists in 3’-splicing site region. May be involved in the activation of proximal AG. Probably also involved in alternative splicing regulation (586 aa)
APLFaprataxin and PNKP like factor; Nuclease involved in single-strand and double-strand DNA break repair. Recruited to sites of DNA damage through interaction with poly(ADP-ribose), a polymeric post-translational modification synthesized transiently at sites of chromosomal damage to accelerate DNA strand break repair reactions. Displays apurinic- apyrimidinic (AP) endonuclease and 3’-5’ exonuclease activities in vitro. Also able to introduce nicks at hydroxyuracil and other types of pyrimidine base damage (511 aa)
PRKDCprotein kinase, DNA-activated, catalytic polypeptide (4127 aa)
ARFRP1ADP-ribosylation factor related protein 1; Possibly involved in plasma membrane-related signaling events (201 aa)
XRCC4X-ray repair complementing defective repair in Chinese hamster cells 4; Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. Binds to DNA and to DNA ligase IV (LIG4). The LIG4-XRCC4 complex is responsible for the NHEJ ligation step, and XRCC4 enhances the joining activity of LIG4. Binding of the LIG4-XRCC4 complex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends (336 aa)
RPS21ribosomal protein S21 (83 aa)
RPS3Aribosomal protein S3A; May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity) (264 aa)
LIG4ligase IV, DNA, ATP-dependent; Efficiently joins single-strand breaks in a double- stranded polydeoxynucleotide in an ATP-dependent reaction. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The LIG4-XRCC4 complex is responsible for the NHEJ ligation step, and XRCC4 enhances the joining activity of LIG4. Binding of the LIG4-XRCC4 complex to DNA ends is dependent on the assembly of the DNA- dependent protein kinase complex DNA-PK to these DNA ends (911 aa)
XRCC6X-ray repair complementing defective repair in Chinese hamster cells 6; Single stranded DNA-dependent ATP-dependent helicase. Has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3’-5’ direction. Binding to DNA may be mediated by XRCC6. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The XRCC5/6 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the [...] (609 aa)
TOP1topoisomerase (DNA) I (765 aa)
HIST3H3histone cluster 3, H3; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
PARP1poly (ADP-ribose) polymerase 1; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP- ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a [...] (1014 aa)
YBX1Y box binding protein 1; Mediates pre-mRNA alternative splicing regulation. Binds to splice sites in pre-mRNA and regulates splice site selection. Binds and stabilizes cytoplasmic mRNA. Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Regulates the transcription of numerous genes. Its transcriptional activity on the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at ’Lys-6’ and ’Lys-7’. Binds to promoters that contain a Y-box (5’-CTGATTGGCCAA-3’), such as MD [...] (324 aa)
DCLRE1CDNA cross-link repair 1C (692 aa)
LIG3ligase III, DNA, ATP-dependent; Interacts with DNA-repair protein XRCC1 and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents (1009 aa)
XRCC5X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining); Single stranded DNA-dependent ATP-dependent helicase. Has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3’-5’ direction. Binding to DNA may be mediated by XRCC6. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The XRCC5/6 dimer acts as regulatory subunit of the DNA-dependent protein kinase [...] (732 aa)
IRX5iroquois homeobox 5; Establishes the cardiac repolarization gradient by its repressive actions on the KCND2 potassium-channel gene. Required for retinal cone bipolar cell differentiation. May regulate contrast adaptation in the retina and control specific aspects of visual function in circuits of the mammalian retina (By similarity). Could be involved in the regulation of both the cell cycle and apoptosis in prostate cancer cells. Involved in craniofacial and gonadal development. Modulates the migration of progenitor cell populations in branchial arches and gonads by repressing CXCL12 (483 aa)
RECQLRecQ protein-like (DNA helicase Q1-like); DNA helicase that may play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens. Exhibits a magnesium-dependent ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3’-5’ direction (649 aa)
C4orf27chromosome 4 open reading frame 27 (346 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (38%)