Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CHRNA9 CHRNA9 RIMS2 RIMS2 TRIM23 TRIM23 LRRC59 LRRC59 RER1 RER1 CHRNB4 CHRNB4 CHRNA3 CHRNA3 DROSHA DROSHA STXBP5 STXBP5 CHRNB1 CHRNB1 CHRNA7 CHRNA7 CHRNG CHRNG CHRNA1 CHRNA1 CHRNA5 CHRNA5 DNAJC18 DNAJC18 CHRNA4 CHRNA4 CHRNE CHRNE CHRNB2 CHRNB2 CHRNA2 CHRNA2 UMPS UMPS PFAS PFAS CHRNA6 CHRNA6 CHRND CHRND CHRNA10 CHRNA10 CHRNB3 CHRNB3 BICC1 BICC1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
LRRC59leucine rich repeat containing 59; Required for nuclear import of FGF1, but not that of FGF2. Might regulate nuclear import of exogenous FGF1 by facilitating interaction with the nuclear import machinery and by transporting cytosolic FGF1 to, and possibly through, the nuclear pores (307 aa)
TRIM23tripartite motif containing 23; Acts as an E3 ubiquitin-protein ligase. In the presence of the human cytomegalovirus (HCMV) protein UL144, participates in ’Lys-63’-linked auto-ubiquitination of TRAF6 resulting in the virally controlled activation of NF-kappa-B at early time of infection. The C-terminus can act as an allosteric activator of the cholera toxin catalytic subunit (574 aa)
UMPSuridine monophosphate synthetase (480 aa)
CHRNA10cholinergic receptor, nicotinic, alpha 10 (neuronal); Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and red [...] (450 aa)
CHRNDcholinergic receptor, nicotinic, delta (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (517 aa)
CHRNA1cholinergic receptor, nicotinic, alpha 1 (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (482 aa)
CHRNB4cholinergic receptor, nicotinic, beta 4 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (498 aa)
CHRNA6cholinergic receptor, nicotinic, alpha 6 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (494 aa)
CHRNB3cholinergic receptor, nicotinic, beta 3 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (458 aa)
CHRNEcholinergic receptor, nicotinic, epsilon (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (493 aa)
CHRNA5cholinergic receptor, nicotinic, alpha 5 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (468 aa)
RER1RER1 retention in endoplasmic reticulum 1 homolog (S. cerevisiae); Involved in the retrieval of endoplasmic reticulum membrane proteins from the early Golgi compartment (By similarity) (196 aa)
DNAJC18DnaJ (Hsp40) homolog, subfamily C, member 18 (358 aa)
CHRNB1cholinergic receptor, nicotinic, beta 1 (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (501 aa)
CHRNA9cholinergic receptor, nicotinic, alpha 9 (neuronal); Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and redu [...] (479 aa)
PFASphosphoribosylformylglycinamidine synthase (1338 aa)
CHRNA3cholinergic receptor, nicotinic, alpha 3 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (505 aa)
STXBP5syntaxin binding protein 5 (tomosyn); Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity) (1151 aa)
DROSHAdrosha, ribonuclease type III; Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3’ and 5’ strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA- ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate matu [...] (1374 aa)
CHRNB2cholinergic receptor, nicotinic, beta 2 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions (502 aa)
CHRNA4cholinergic receptor, nicotinic, alpha 4 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions (627 aa)
BICC1bicaudal C homolog 1 (Drosophila); Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development (974 aa)
CHRNGcholinergic receptor, nicotinic, gamma (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (517 aa)
RIMS2regulating synaptic membrane exocytosis 2; Rab effector involved in exocytosis. May act as scaffold protein (1349 aa)
CHRNA2cholinergic receptor, nicotinic, alpha 2 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (529 aa)
CHRNA7cholinergic receptor, nicotinic, alpha 7 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin (531 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (49%)