Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SNRPD3 SNRPD3 SF3B14 SF3B14 POLR2C POLR2C HNRNPL HNRNPL SF3A1 SF3A1 POLR2E POLR2E SNRNP40 SNRNP40 SNRPA SNRPA SNRPB2 SNRPB2 SUGP1 SUGP1 PHF5A PHF5A SF3A2 SF3A2 NHP2L1 NHP2L1 FUS FUS POLR2A POLR2A SNRPA1 SNRPA1 CSTF2 CSTF2 PABPN1 PABPN1 CSTF3 CSTF3 CLP1 CLP1 CPSF2 CPSF2 WDR33 WDR33 SYMPK SYMPK CSTF2T CSTF2T FIP1L1 FIP1L1 RBBP6 RBBP6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
POLR2Epolymerase (RNA) II (DNA directed) polypeptide E, 25kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2E/RPB5 is part of the low [...] (210 aa)
SF3A1splicing factor 3a, subunit 1, 120kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (793 aa)
SNRPD3small nuclear ribonucleoprotein D3 polypeptide 18kDa; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (126 aa)
NHP2L1NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae); Binds to the 5’-stem-loop of U4 snRNA and may play a role in the late stage of spliceosome assembly. The protein undergoes a conformational change upon RNA-binding (128 aa)
PHF5APHD finger protein 5A; Acts as a transcriptional regulator by binding to the GJA1/Cx43 promoter and enhancing its up-regulation by ESR1/ER- alpha. Also involved in pre-mRNA splicing (110 aa)
PABPN1poly(A) binding protein, nuclear 1; Involved in the 3’-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product. Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and controls also the poly(A) tail length. Increases the affinity of poly(A) polymerase for RNA. Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with SKIP to synergistically activate E-box-mediated transcripti [...] (306 aa)
POLR2Cpolymerase (RNA) II (DNA directed) polypeptide C, 33kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to open and close the cleft (By similarity) (275 aa)
HNRNPLheterogeneous nuclear ribonucleoprotein L; This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Is associated with most nascent transcripts including those of the landmark giant loops of amphibian lampbrush chromosomes. Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (589 aa)
SF3A2splicing factor 3a, subunit 2, 66kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (464 aa)
SF3B14Pre-mRNA branch site protein p14 ; Necessary for the splicing of pre-mRNA. Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing. Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch sites of U2 and U12 respectively (125 aa)
SNRPAsmall nuclear ribonucleoprotein polypeptide A; Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5’-UGCAC-3’ motif in vitro (282 aa)
SYMPKsymplekin; Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3’-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house- keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity (1274 aa)
SNRPB2small nuclear ribonucleoprotein polypeptide B; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein (225 aa)
SUGP1SURP and G patch domain containing 1; Plays a role in pre-mRNA splicing (645 aa)
FUSfused in sarcoma; Binds both single-stranded and double-stranded DNA and promotes ATP-independent annealing of complementary single- stranded DNAs and D-loop formation in superhelical double-stranded DNA. May play a role in maintenance of genomic integrity (526 aa)
SNRPA1small nuclear ribonucleoprotein polypeptide A’; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA (255 aa)
SNRNP40small nuclear ribonucleoprotein 40kDa (U5); Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs (357 aa)
CPSF2cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
POLR2Apolymerase (RNA) II (DNA directed) polypeptide A, 220kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the cen [...] (1970 aa)
CSTF3cleavage stimulation factor, 3’ pre-RNA, subunit 3, 77kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)
RBBP6retinoblastoma binding protein 6 (1792 aa)
WDR33WD repeat domain 33; Essential for both cleavage and polyadenylation of pre- mRNA 3’ ends (1336 aa)
CSTF2Tcleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa, tau variant; May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity) (616 aa)
FIP1L1FIP1 like 1 (S. cerevisiae) (594 aa)
CSTF2cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
CLP1cleavage and polyadenylation factor I subunit 1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Appears to have roles in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex. Phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicin [...] (425 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (26%)