Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
ACSL4 ACSL4 ACSL3 ACSL3 SHISA8 SHISA8 ACSBG1 ACSBG1 ACSBG2 ACSBG2 CPT1B CPT1B ACSL5 ACSL5 ACACB ACACB CPT1C CPT1C CPT1A CPT1A ACSL6 ACSL6 PDHA2 PDHA2 PDHA1 PDHA1 ACSL1 ACSL1 EPS8 EPS8 CPT2 CPT2 CRAT CRAT DLG3 DLG3 GRIN2A GRIN2A GRIA4 GRIA4 CACNG4 CACNG4 DLG4 DLG4 CACNG3 CACNG3 CNIH2 CNIH2 GRIN3B GRIN3B GRID2 GRID2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CACNG3calcium channel, voltage-dependent, gamma subunit 3; Regulates the trafficking and gating properties of AMPA- selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity) (315 aa)
GRIN3Bglutamate receptor, ionotropic, N-methyl-D-aspartate 3B; NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine (1043 aa)
ACSBG2acyl-CoA synthetase bubblegum family member 2; Mediates activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Able to activate long-chain fatty acids. Also able to activate very long-chain fatty acids; however, the relevance of such activity is unclear in vivo. Has increased ability to activate oleic and linoleic acid. May play a role in spermatogenesis (666 aa)
ACSBG1acyl-CoA synthetase bubblegum family member 1; Mediates activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Able to activate long-chain fatty acids. Also able to activate very long-chain fatty acids; however, the relevance of such activity is unclear in vivo. Can activate diverse saturated, monosaturated and polyunsaturated fatty acids (724 aa)
CACNG4calcium channel, voltage-dependent, gamma subunit 4; Regulates the trafficking and gating properties of AMPA- selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (327 aa)
CPT1Acarnitine palmitoyltransferase 1A (liver); Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion. Plays an important role in triglyceride metabolism (773 aa)
EPS8epidermal growth factor receptor pathway substrate 8; Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac- specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and ac [...] (822 aa)
ACSL1acyl-CoA synthetase long-chain family member 1; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitoleate, oleate and linoleate (698 aa)
GRID2glutamate receptor, ionotropic, delta 2; Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists (1007 aa)
GRIA4glutamate receptor, ionotropic, AMPA 4; Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized [...] (902 aa)
DLG4discs, large homolog 4 (Drosophila); Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B (By similarity) (767 aa)
PDHA2pyruvate dehydrogenase (lipoamide) alpha 2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (388 aa)
ACSL6acyl-CoA synthetase long-chain family member 6; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid (722 aa)
CNIH2cornichon homolog 2 (Drosophila); Regulates the trafficking and gating properties of AMPA- selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by regulating their rates of activation, deactivation and desensitization. Blocks CACNG8-mediated resensitization of AMPA receptors (160 aa)
CPT1Bcarnitine palmitoyltransferase 1B (muscle) (772 aa)
CRATcarnitine O-acetyltransferase; Carnitine acetylase is specific for short chain fatty acids. Carnitine acetylase seems to affect the flux through the pyruvate dehydrogenase complex. It may be involved as well in the transport of acetyl-CoA into mitochondria (626 aa)
CPT1Ccarnitine palmitoyltransferase 1C (803 aa)
GRIN2Aglutamate receptor, ionotropic, N-methyl D-aspartate 2A; NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Activation requires binding of agonist to both types of subunits (1464 aa)
ACSL4acyl-CoA synthetase long-chain family member 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses arachidonate and eicosapentaenoate as substrates (711 aa)
ACACBacetyl-CoA carboxylase beta; ACC-beta may be involved in the provision of malonyl-CoA or in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. Carries out three functions- biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase (2458 aa)
ACSL5acyl-CoA synthetase long-chain family member 5; Acyl-CoA synthetases (ACSL) activate long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL5 may activate fatty acids from exogenous sources for the synthesis of triacylglycerol destined for intracellular storage (By similarity). Utilizes a wide range of saturated fatty acids with a preference for C16-C18 unsaturated fatty acids (By similarity). It was suggested that it may also stimulate fatty acid oxidation (By similarity). At the villus tip of the crypt-villus axis of the small intestine [...] (739 aa)
ACSL3acyl-CoA synthetase long-chain family member 3; Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL3 mediates hepatic lipogenesis (By similarity). Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates (By similarity). Has mainly an anabolic role in energy metabolism. Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (720 aa)
CPT2carnitine palmitoyltransferase 2 (658 aa)
DLG3discs, large homolog 3 (Drosophila); Required for learning most likely through its role in synaptic plasticity following NMDA receptor signaling (817 aa)
PDHA1pyruvate dehydrogenase (lipoamide) alpha 1 (428 aa)
SHISA8shisa homolog 8 (Xenopus laevis) (163 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (47%)