Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
GUSB GUSB CES2 CES2 KL KL HSD17B3 HSD17B3 CYP2A13 CYP2A13 UGDH UGDH HSD3B2 HSD3B2 CYP3A4 CYP3A4 HSD3B1 HSD3B1 UXS1 UXS1 CYP3A7 CYP3A7 UGT2B17 UGT2B17 HSD17B1 HSD17B1 CYP2C8 CYP2C8 CYP2D6 CYP2D6 CYP1A2 CYP1A2 CYP1A1 CYP1A1 CYP4A11 CYP4A11 CYP2B6 CYP2B6 HSD17B6 HSD17B6 COMT COMT CYP2S1 CYP2S1 AOX1 AOX1 ADH7 ADH7 ADH6 ADH6 ADH1B ADH1B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
GUSBglucuronidase, beta; Plays an important role in the degradation of dermatan and keratan sulfates (651 aa)
ADH1Balcohol dehydrogenase 1B (class I), beta polypeptide (375 aa)
CYP2S1cytochrome P450, family 2, subfamily S, polypeptide 1; Has a potential importance for extrahepatic xenobiotic metabolism (504 aa)
CYP4A11cytochrome P450, family 4, subfamily A, polypeptide 11; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) (519 aa)
CES2carboxylesterase 2; Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine (623 aa)
HSD17B6hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse); NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17-beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3- alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is firs [...] (317 aa)
UGDHUDP-glucose 6-dehydrogenase; Involved in the biosynthesis of glycosaminoglycans; hyaluronan, chondroitin sulfate, and heparan sulfate (494 aa)
UGT2B17UDP glucuronosyltransferase 2 family, polypeptide B17; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. The major substrates of this isozyme are eugenol > 4-methylumbelliferone > dihydrotestosterone (DHT) > androstane-3-alpha,17-beta-diol (3-alpha-diol) > testosterone > androsterone (ADT) (530 aa)
CYP2B6cytochrome P450, family 2, subfamily B, polypeptide 6; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase (491 aa)
CYP2A13cytochrome P450, family 2, subfamily A, polypeptide 13; Exhibits a coumarin 7-hydroxylase activity. Active in the metabolic activation of hexamethylphosphoramide, N,N- dimethylaniline, 2’-methoxyacetophenone, N- nitrosomethylphenylamine, and the tobacco-specific carcinogen, 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone. Possesses phenacetin O-deethylation activity (494 aa)
CYP3A7cytochrome P450, family 3, subfamily A, polypeptide 7; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (503 aa)
CYP3A4cytochrome P450, family 3, subfamily A, polypeptide 4; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1’-hydroxylation and midazolam 4- hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2- exo-monooxygenase. The enzyme also hydroxylates etoposide (503 aa)
CYP1A2cytochrome P450, family 1, subfamily A, polypeptide 2; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic a [...] (516 aa)
CYP2D6cytochrome P450, family 2, subfamily D, polypeptide 6; Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants (497 aa)
COMTcatechol-O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol (271 aa)
HSD3B1hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. Efficiently catalyzes the transformation of pregnenolone to progesterone, 17-alpha-hydroxypregnenolone to 17- alpha-hydroxyprogesterone, DHEA to 4-androstenedione, dihydrotestosterone to 5-alpha-androstane-3 beta,17 beta-diol, dehydroepiandr [...] (373 aa)
HSD3B2hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids (372 aa)
CYP2C8cytochrome P450, family 2, subfamily C, polypeptide 8; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti- cancer drug paclitaxel (taxol) (490 aa)
AOX1aldehyde oxidase 1 (1338 aa)
HSD17B3hydroxysteroid (17-beta) dehydrogenase 3; Favors the reduction of androstenedione to testosterone. Uses NADPH while the two other EDH17B enzymes use NADH (310 aa)
CYP1A1cytochrome P450, family 1, subfamily A, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
KLklotho; May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity) (1012 aa)
ADH6alcohol dehydrogenase 6 (class V) (375 aa)
UXS1UDP-glucuronate decarboxylase 1; Catalyzes the NAD-dependent decarboxylation of UDP- glucuronic acid to UDP-xylose. Necessary for the biosynthesis of the core tetrasaccharide in glycosaminoglycan biosynthesis (420 aa)
ADH7alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide; Could function in retinol oxidation for the synthesis of retinoic acid, a hormone important for cellular differentiation. Medium-chain (octanol) and aromatic (m-nitrobenzaldehyde) compounds are the best substrates. Ethanol is not a good substrate but at the high ethanol concentrations reached in the digestive tract, it plays a role in the ethanol oxidation and contributes to the first pass ethanol metabolism (394 aa)
HSD17B1hydroxysteroid (17-beta) dehydrogenase 1; Favors the reduction of estrogens and androgens. Also has 20-alpha-HSD activity. Uses preferentially NADH (328 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (32%)