Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
UBE2I UBE2I CDC34 CDC34 UBE2H UBE2H UBE2D4 UBE2D4 HEATR5A HEATR5A UBE2R2 UBE2R2 UBE2V2 UBE2V2 UBE2K UBE2K UBE2V1 UBE2V1 CIR1 CIR1 UBE2S UBE2S UBE2N UBE2N POLDIP3 POLDIP3 USP21 USP21 UBC UBC UBE2E1 UBE2E1 UBE2L6 UBE2L6 UBE2L3 UBE2L3 USP32 USP32 RNF144A RNF144A PRKDC PRKDC HEATR5B HEATR5B E2F4 E2F4 E2F1 E2F1 E2F3 E2F3 E2F2 E2F2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CDC34cell division cycle 34 homolog (S. cerevisiae); Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 48’-linked polyubiquitination. Cooperates with the E2 UBCH5C and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation. Performs ubiquitin chain elongation building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin. UBE2D3 acts as an initiator E2, priming the phosphorylated NFKBIA target at positions ’Lys-21’ and/or ’Lys-22’ with a monoubiqu [...] (236 aa)
UBE2D4ubiquitin-conjugating enzyme E2D 4 (putative); Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, but may prefer ’Lys-11’ and ’Lys-48’-linked polyubiquitination (147 aa)
HEATR5BHEAT repeat containing 5B (2071 aa)
POLDIP3polymerase (DNA-directed), delta interacting protein 3 (421 aa)
UBE2Kubiquitin-conjugating enzyme E2K (200 aa)
E2F3E2F transcription factor 3; Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5’-TTTC[CG]CGC- 3’ found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner (465 aa)
UBE2R2ubiquitin-conjugating enzyme E2R 2; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes monoubiquitination and ’Lys-48’-linked polyubiquitination. May be involved in degradation of katenin (238 aa)
UBE2Subiquitin-conjugating enzyme E2S; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes ’Lys-11’-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis. Acts by specifically elongating ’Lys-11’-linked polyubiquitin chains initiated by the E2 enzyme UBE2C/UBCH10 on APC/C substrates, enhancing the degradation of APC/C substrates by the proteasome and promoting mitotic exit. Also acts by elongating ubiquit [...] (222 aa)
UBE2L6ubiquitin-conjugating enzyme E2L 6; Catalyzes the covalent attachment of ubiquitin or ISG15 to other proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Promotes ubiquitination and subsequent proteasomal degradation of FLT3 (153 aa)
USP21ubiquitin specific peptidase 21; Deubiquitinates histone H2A, a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator. Deubiquitination of histone H2A releaves the repression of di- and trimethylation of histone H3 at ’Lys-4’, resulting in regulation of transcriptional initiation. Regulates gene expression via histone H2A deubiquitination (By similarity). Also capable of removing NEDD8 from NEDD8 conjugates but has no effect on Sentrin-1 conjugates (565 aa)
USP32ubiquitin specific peptidase 32 (1604 aa)
UBE2E1ubiquitin-conjugating enzyme E2E 1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes the covalent attachment of ISG15 to other proteins. Mediates the selective degradation of short-lived and abnormal proteins. In vitro also catalyzes ’Lys-48’-linked polyubiquitination (193 aa)
PRKDCprotein kinase, DNA-activated, catalytic polypeptide (4127 aa)
UBE2Nubiquitin-conjugating enzyme E2N; The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non-canonical ’Lys-63’-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the ’Lys-63’-linked poly-ubiquitination of PC [...] (152 aa)
RNF144Aring finger protein 144A; E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (By similarity) (292 aa)
UBE2Iubiquitin-conjugating enzyme E2I; Accepts the ubiquitin-like proteins SUMO1, SUMO2, SUMO3 and SUMO4 from the UBLE1A-UBLE1B E1 complex and catalyzes their covalent attachment to other proteins with the help of an E3 ligase such as RANBP2 or CBX4. Can catalyze the formation of poly- SUMO chains. Necessary for sumoylation of FOXL2 and KAT5. Essential for nuclear architecture and chromosome segregation. Sumoylates p53/TP53 at ’Lys-386’ (By similarity) (158 aa)
CIR1corepressor interacting with RBPJ, 1; May modulate splice site selection during alternative splicing of pre-mRNAs (By similarity). Regulates transcription and acts as corepressor for RBPJ. Recruits RBPJ to the Sin3-histone deacetylase complex (HDAC). Required for RBPJ-mediated repression of transcription (450 aa)
UBE2V1ubiquitin-conjugating enzyme E2 variant 1 (170 aa)
UBE2L3ubiquitin-conjugating enzyme E2L 3; Ubiquitin-conjugating enzyme E2 that specifically acts with HECT-type and RBR family E3 ubiquitin-protein ligases. Does not function with most RING-containing E3 ubiquitin-protein ligases because it lacks intrinsic E3-independent reactivity with lysine- in contrast, it has activity with the RBR family E3 enzymes, such as PARK2 and ARIH1, that function like function like RING-HECT hybrids. Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys-11’-linked polyubiquitination. Involved in th [...] (154 aa)
UBCubiquitin C (685 aa)
E2F1E2F transcription factor 1; Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5’-TTTC[CG]CGC- 3’ found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F1 binds preferentially RB1 in a cell-cycle dependent manner. It can mediate both cell proliferation and TP53/p53-dependent apoptosis (437 aa)
UBE2Hubiquitin-conjugating enzyme E2H; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-linked polyubiquitination. Capable, in vitro, to ubiquitinate histone H2A (183 aa)
E2F2E2F transcription factor 2; Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5’-TTTC[CG]CGC- 3’ found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from g1 to s phase. E2F2 binds specifically to RB1 in a cell-cycle dependent manner (437 aa)
E2F4E2F transcription factor 4, p107/p130-binding; Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5’-TTTC[CG]CGC- 3’ found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F4 binds with high affinity to RBL1 and RBL2. In some instances can also bind RB1 (413 aa)
UBE2V2ubiquitin-conjugating enzyme E2 variant 2; Has no ubiquitin ligase activity on its own. The UBE2V2/UBE2N heterodimer catalyzes the synthesis of non-canonical poly-ubiquitin chains that are linked through ’Lys-63’. This type of poly-ubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage (145 aa)
HEATR5AHEAT repeat containing 5A (2046 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (38%)