Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
RBM25 RBM25 SNRPA SNRPA CCAR1 CCAR1 POLR2I POLR2I PRPF6 PRPF6 POLR2E POLR2E SUGP1 SUGP1 POLR2D POLR2D NHP2L1 NHP2L1 SNRPG SNRPG SRRM1 SRRM1 TXNL4A TXNL4A CPSF3 CPSF3 NUP37 NUP37 DHX38 DHX38 SF3B14 SF3B14 ALYREF ALYREF NUP210 NUP210 UPF3B UPF3B MAGOH MAGOH NUP85 NUP85 AAAS AAAS NUP133 NUP133 NUPL2 NUPL2 RANBP2 RANBP2 NUP153 NUP153
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
AAASachalasia, adrenocortical insufficiency, alacrimia; Plays a role in the normal development of the peripheral and central nervous system (546 aa)
POLR2Epolymerase (RNA) II (DNA directed) polypeptide E, 25kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2E/RPB5 is part of the low [...] (210 aa)
NHP2L1NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae); Binds to the 5’-stem-loop of U4 snRNA and may play a role in the late stage of spliceosome assembly. The protein undergoes a conformational change upon RNA-binding (128 aa)
POLR2Ipolymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template (By similarity) (125 aa)
SF3B14Pre-mRNA branch site protein p14 ; Necessary for the splicing of pre-mRNA. Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing. Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch sites of U2 and U12 respectively (125 aa)
CPSF3cleavage and polyadenylation specific factor 3, 73kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ to 3’ [...] (684 aa)
SNRPAsmall nuclear ribonucleoprotein polypeptide A; Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5’-UGCAC-3’ motif in vitro (282 aa)
NUP85nucleoporin 85kDa; Essential component of the nuclear pore complex (NPC) that seems to be required for NPC assembly and maintenance. As part of the NPC Nup107-160 subcomplex plays a role in RNA export and in tethering NUP98/Nup98 and NUP153 to the nucleus. The Nup107-160 complex seems to be required for spindle assembly during mitosis. NUP85 is required for membrane clustering of CCL2- activated CCR2. Seems to be involved in CCR2-mediated chemotaxis of monocytes and may link activated CCR2 to the phosphatidyl- inositol 3-kinase-Rac-lammellipodium protrusion cascade (656 aa)
SUGP1SURP and G patch domain containing 1; Plays a role in pre-mRNA splicing (645 aa)
NUP37nucleoporin 37kDa; Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation (326 aa)
NUP210nucleoporin 210kDa; Nucleoporin essential for nuclear pore assembly and fusion, nuclear pore spacing, as well as structural integrity (1887 aa)
NUPL2nucleoporin like 2; Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. In case of infection by HIV-1, it may participate in the docking of viral Vpr at the nuclear envelope (423 aa)
NUP133nucleoporin 133kDa; Involved in poly(A)+ RNA transport (1156 aa)
RBM25RNA binding motif protein 25 (843 aa)
NUP153nucleoporin 153kDa; Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat- cont [...] (1475 aa)
CCAR1cell division cycle and apoptosis regulator 1 (1150 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
DHX38DEAH (Asp-Glu-Ala-His) box polypeptide 38; Probable ATP-binding RNA helicase involved in pre-mRNA splicing (1227 aa)
TXNL4Athioredoxin-like 4A; Essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes that are involved in spliceosome assembly (142 aa)
SNRPGsmall nuclear ribonucleoprotein polypeptide G; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5 (76 aa)
POLR2Dpolymerase (RNA) II (DNA directed) polypeptide D; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB4 is part of a subcomplex with RPB7 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex s [...] (142 aa)
UPF3BUPF3 regulator of nonsense transcripts homolog B (yeast); Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2- UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mR [...] (483 aa)
RANBP2RAN binding protein 2; E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I. Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates. Could also have isomerase or chaperone activity and may bind RNA or DNA. Component of the nuclear export pathway. Specific docking site for the nuclear export factor exportin-1. Sumoylates PML at ’Lys-490’ which is essential for the proper assembly of PML-NB (3224 aa)
SRRM1serine/arginine repetitive matrix 1; Part of pre- and post-splicing multiprotein mRNP complexes. Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3’-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequen [...] (904 aa)
MAGOHmago-nashi homolog, proliferation-associated (Drosophila); Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mR [...] (146 aa)
ALYREFAly/REF export factor; Component of the THO subcomplex of the TREX complex. The TREX complex specifically associates with spliced mRNA and not with unspliced pre-mRNA. It is recruited to spliced mRNAs by a transcription-independent mechanism. Binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5’ end of the mRNA where it functions in mRNA export. The recruitment occurs via an interaction between ALYREF/THOC4 and the cap-binding protein NCBP1. DDX39B functions as a bridge between ALYREF/THOC4 and the THO [...] (264 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (53%)