Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
RRAGA RRAGA BCL2L2 BCL2L2 MSI2 MSI2 PABPN1 PABPN1 RNPS1 RNPS1 CSTF1 CSTF1 SUB1 SUB1 SRSF4 SRSF4 UBC UBC CPSF3 CPSF3 SRSF6 SRSF6 CSTF2T CSTF2T CSTF3 CSTF3 GTF2B GTF2B CPSF4 CPSF4 CPSF2 CPSF2 FIP1L1 FIP1L1 CLP1 CLP1 ENSG00000258643 ENSG00000258643 MSI1 MSI1 CPSF1 CPSF1 GTF3C3 GTF3C3 WDR82 WDR82 CPSF3L CPSF3L RBBP6 RBBP6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PABPN1poly(A) binding protein, nuclear 1; Involved in the 3’-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product. Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and controls also the poly(A) tail length. Increases the affinity of poly(A) polymerase for RNA. Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with SKIP to synergistically activate E-box-mediated transcripti [...] (306 aa)
CSTF1cleavage stimulation factor, 3’ pre-RNA, subunit 1, 50kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. May be responsible for the interaction of CSTF with other factors to form a stable complex on the pre-mRNA (431 aa)
CPSF3cleavage and polyadenylation specific factor 3, 73kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ to 3’ [...] (684 aa)
SRSF6serine/arginine-rich splicing factor 6; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (344 aa)
BCL2L2BCL2-like 2; Promotes cell survival. Blocks dexamethasone-induced apoptosis. Mediates survival of postmitotic Sertoli cells by suppressing death-promoting activity of BAX (193 aa)
MSI1musashi homolog 1 (Drosophila); RNA binding protein that regulates the expression of target mRNAs at the translation level. Regulates expression of the NOTCH1 antagonist NUMB. Binds RNA containing the sequence 5’- GUUAGUUAGUUAGUU-3’ and other sequences containing the pattern 5’- [GA]U(1-3)AGU-3’. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity) (362 aa)
GTF3C3general transcription factor IIIC, polypeptide 3, 102kDa; Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters (886 aa)
SUB1SUB1 homolog (S. cerevisiae); General coactivator that functions cooperatively with TAFs and mediates functional interactions between upstream activators and the general transcriptional machinery. May be involved in stabilizing the multiprotein transcription complex. Binds single-stranded DNA. Also binds, in vitro, non-specifically to double-stranded DNA (ds DNA) (127 aa)
MSI2musashi homolog 2 (Drosophila); RNA binding protein that regulates the expression of target mRNAs at the translation level. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity) (328 aa)
CPSF4cleavage and polyadenylation specific factor 4, 30kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U) (269 aa)
WDR82WD repeat domain 82; Regulatory component of the SET1 complex implicated in the tethering of this complex to transcriptional start sites of active genes. Facilitates histone H3 ’Lys-4’ methylation via recruitment of the SETD1A or SETD1B to the ’Ser-5’ phosphorylated C-terminal domain (CTD) of RNA polymerase II large subunit (POLR2A). Component of PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (313 aa)
CPSF2cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
RNPS1RNA binding protein S1, serine-rich domain (305 aa)
CSTF3cleavage stimulation factor, 3’ pre-RNA, subunit 3, 77kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)
RBBP6retinoblastoma binding protein 6 (1792 aa)
CSTF2Tcleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa, tau variant; May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity) (616 aa)
FIP1L1FIP1 like 1 (S. cerevisiae) (594 aa)
CPSF1cleavage and polyadenylation specific factor 1, 160kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (1443 aa)
UBCubiquitin C (685 aa)
GTF2Bgeneral transcription factor IIB; General factor that plays a major role in the activation of eukaryotic genes transcribed by RNA polymerase II (316 aa)
SRSF4serine/arginine-rich splicing factor 4; Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10 (494 aa)
RRAGARas-related GTP binding A; Guanine nucleotide-binding protein forming heterodimeric Rag complexes required for the amino acid-induced relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. This is a crucial step in the activation of the TOR signaling cascade by amino acids. Involved in the RCC1/Ran-GTPase pathway. May play a direct role in a TNF-alpha signaling pathway leading to induction of cell death. May alternatively act as a cellular target for adenovirus E3-14.7K, an inhibitor of TNF-alpha functions, thereby affecting cell death (313 aa)
CPSF3Lcleavage and polyadenylation specific factor 3-like (600 aa)
CLP1cleavage and polyadenylation factor I subunit 1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Appears to have roles in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex. Phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicin [...] (425 aa)
ENSG00000258643BCL2L2-PABPN1 readthrough; Promotes cell survival. Blocks dexamethasone-induced apoptosis. Mediates survival of postmitotic Sertoli cells by suppressing death-promoting activity of BAX (333 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (41%)