Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
H2BFM H2BFM HIST2H2BE HIST2H2BE KDM4D KDM4D HIST1H2BJ HIST1H2BJ HIST1H2BG HIST1H2BG HIST1H2BN HIST1H2BN HIST1H2BM HIST1H2BM HIST1H2BE HIST1H2BE HIST1H2BL HIST1H2BL HIST3H2BB HIST3H2BB HIST1H2BF HIST1H2BF HIST1H2BO HIST1H2BO HIST1H2BA HIST1H2BA H2BFWT H2BFWT HIST1H2BB HIST1H2BB HIST1H2BK HIST1H2BK IPO8 IPO8 HIST1H2BH HIST1H2BH TP53 TP53 SMARCC2 SMARCC2 SMARCC1 SMARCC1 HIST1H2BC HIST1H2BC AR AR MYSM1 MYSM1 IPO7 IPO7 HIST1H2BI HIST1H2BI
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
HIST1H2BGhistone cluster 1, H2bg (126 aa)
SMARCC1SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 1; Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). May stimulate the ATPase activity of the catalytic subunit of the complex. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR), which is required for the ligand-bound VDR- mediated transrepression of the CYP27B1 gene. Belongs to the neur [...] (1105 aa)
IPO8importin 8; Seems to function in nuclear protein import, either by acting as autonomous nuclear transport receptor or as an adapter- like protein in association with the importin-beta subunit KPNB1. Acting autonomously, is thought to serve itself as receptor for nuclear localization signals (NLS) and to promote translocation of import substrates through the nuclear pore complex (NPC) by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the [...] (1037 aa)
SMARCC2SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 2; Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Can stimulate the ATPase activity of the catalytic subunit of these complexes. May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR) [...] (1214 aa)
TP53tumor protein p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (By similarity) (393 aa)
HIST1H2BAhistone cluster 1, H2ba; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (127 aa)
HIST1H2BOhistone cluster 1, H2bo; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BChistone cluster 1, H2bc (126 aa)
KDM4Dlysine (K)-specific demethylase 4D; Histone demethylase that specifically demethylates ’Lys- 9’ of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 ’Lys-4’, H3 ’Lys-27’, H3 ’Lys-36’ nor H4 ’Lys-20’. Demethylates both di- and trimethylated H3 ’Lys- 9’ residue, while it has no activity on monomethylated residues. Demethylation of Lys residue generates formaldehyde and succinate (523 aa)
HIST1H2BJhistone cluster 1, H2bj; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
H2BFMH2B histone family, member M; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (154 aa)
HIST1H2BHhistone cluster 1, H2bh; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BEhistone cluster 1, H2be (126 aa)
HIST1H2BKhistone cluster 1, H2bk; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BBhistone cluster 1, H2bb; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BMhistone cluster 1, H2bm; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity) (126 aa)
HIST1H2BFhistone cluster 1, H2bf (126 aa)
H2BFWTH2B histone family, member W, testis-specific; Atypical histone H2B. Nucleosomes containing it are structurally and dynamically indistinguishable from those containing conventional H2B. However, unlike conventional H2B, does not recruit chromosome condensation factors and does not participate in the assembly of mitotic chromosomes. May be important for telomere function (175 aa)
HIST2H2BEhistone cluster 2, H2be (126 aa)
ARandrogen receptor; Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3 (920 aa)
HIST1H2BLhistone cluster 1, H2bl; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BIhistone cluster 1, H2bi; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity) (126 aa)
IPO7importin 7; Functions in nuclear protein import, either by acting as autonomous nuclear transport receptor or as an adapter-like protein in association with the importin-beta subunit KPNB1. Acting autonomously, is thought to serve itself as receptor for nuclear localization signals (NLS) and to promote translocation of import substrates through the nuclear pore complex (NPC) by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm [...] (1038 aa)
HIST3H2BBhistone cluster 3, H2bb; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BNhistone cluster 1, H2bn; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
MYSM1Myb-like, SWIRM and MPN domains 1; Metalloprotease that specifically deubiquitinates monoubiquitinated histone H2A, a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator. Preferentially deubiquitinates monoubiquitinated H2A in hyperacetylated nucleosomes. Deubiquitination of histone H2A leads to facilitate the phosphorylation and dissociation of histone H1 from the nucleosome. Acts as a coactivator by participating in the initiation and elongation steps of androgen receptor (AR)-induced gene activation (828 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (44%)