Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
ENTPD4 ENTPD4 GUK1 GUK1 ENTPD6 ENTPD6 ENTPD5 ENTPD5 HPRT1 HPRT1 NT5C1A NT5C1A ENTPD3 ENTPD3 ENSG00000250741 ENSG00000250741 ADCY10 ADCY10 PDE2A PDE2A NT5C NT5C NT5C2 NT5C2 APRT APRT NT5M NT5M ENTPD1 ENTPD1 ENTPD8 ENTPD8 AK1 AK1 AMPD2 AMPD2 AMPD1 AMPD1 AK4 AK4 AK8 AK8 ADK ADK DCK DCK ADSL ADSL AK7 AK7 AK5 AK5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ADSLadenylosuccinate lyase; Catalyzes two non-sequential steps in de novo AMP synthesis- converts (S)-2-(5-amino-1-(5-phospho-D- ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate (484 aa)
NT5C1A5’-nucleotidase, cytosolic IA; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia (368 aa)
NT5C5’, 3’-nucleotidase, cytosolic; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP (201 aa)
AMPD2adenosine monophosphate deaminase 2 (879 aa)
AK7adenylate kinase 7; Adenylate kinase involved in maintaining ciliary structure and function (By similarity). Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (723 aa)
ADKadenosine kinase; ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. Serves as a potential regulator of concentrations of extracellular adenosine and intracellular adenine nucleotides (362 aa)
DCKdeoxycytidine kinase; Required for the phosphorylation of the deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the phosphorylation of numerous nucleoside analogs widely employed as antiviral and chemotherapeutic agents (260 aa)
AK8adenylate kinase 8; Adenylate kinase. Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (479 aa)
HPRT1hypoxanthine phosphoribosyltransferase 1; Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5- phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway (218 aa)
ENTPD3ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
AK4adenylate kinase 4; Involved in maintaining the homeostasis of cellular nucleotides by catalyzing the interconversion of nucleoside phosphates. Efficiently phosphorylates AMP and dAMP using ATP as phosphate donor, but phosphorylates only AMP when using GTP as phosphate donor (223 aa)
PDE2Aphosphodiesterase 2A, cGMP-stimulated; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (941 aa)
ENTPD5ectonucleoside triphosphate diphosphohydrolase 5; Uridine diphosphatase (UDPase) that promotes protein N- glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. Also hydrolyzes GDP and IDP but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. Plays a ke [...] (428 aa)
NT5C25’-nucleotidase, cytosolic II; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides (561 aa)
AK5adenylate kinase 5; Active on AMP and dAMP with ATP as a donor. When GTP is used as phosphate donor, the enzyme phosphorylates AMP, CMP, and to a small extent dCMP (562 aa)
ENTPD4ectonucleoside triphosphate diphosphohydrolase 4; Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent. The order of activity with different substrates is UDP >> GDP = CDP = TDP, AMP, ADP, ATP and UMP are not substrates. Preferred substrates for isoform 2 are CTP, UDP, CDP, GTP and GDP, while isoform 1 utilizes UTP and TTP (616 aa)
GUK1guanylate kinase 1; Essential for recycling GMP and indirectly, cGMP (241 aa)
ADCY10adenylate cyclase 10 (soluble); Soluble adenylyl cyclase that has a critical role in mammalian spermatogenesis. Produces the cAMP which mediates in part the cAMP-responsive nuclear factors indispensable for maturation of sperm in the epididymis. Induces capacitation, the maturational process that sperm undergo prior to fertilization. May be the bicarbonate sensor. Involved in ciliary beat regulation (1610 aa)
ENTPD1ectonucleoside triphosphate diphosphohydrolase 1 (522 aa)
ENTPD8ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
AK1adenylate kinase 1; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism (194 aa)
ENTPD6ectonucleoside triphosphate diphosphohydrolase 6 (putative); Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5’-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity) (484 aa)
APRTadenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis (180 aa)
NT5M5’,3’-nucleotidase, mitochondrial; Dephosphorylates specifically the 5’ and 2’(3’)- phosphates of uracil and thymine deoxyribonucleotides, and so protects mitochondrial DNA replication from excess dTTP. Has only marginal activity towards dIMP and dGMP (228 aa)
AMPD1adenosine monophosphate deaminase 1; AMP deaminase plays a critical role in energy metabolism (780 aa)
ENSG00000250741NT5C1B-RDH14 readthrough (602 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (62%)