Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SRRM2 SRRM2 PNN PNN SNRPN SNRPN EIF4A3 EIF4A3 RPS11 RPS11 NUDT21 NUDT21 MAGOH MAGOH EFTUD2 EFTUD2 SART1 SART1 RPL5 RPL5 PRPF6 PRPF6 SNRNP200 SNRNP200 SRSF1 SRSF1 UBC UBC PRPF8 PRPF8 SNRPF SNRPF RRP1B RRP1B PRPF4 PRPF4 PRPF4B PRPF4B SRPK2 SRPK2 DDX23 DDX23 SNRNP40 SNRNP40 USP39 USP39 KLF13 KLF13 SUPT16H SUPT16H MAPK12 MAPK12
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
MAPK12mitogen-activated protein kinase 12; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK12 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstre [...] (367 aa)
SUPT16Hsuppressor of Ty 16 homolog (S. cerevisiae); Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the [...] (1047 aa)
PNNpinin, desmosome associated protein (717 aa)
SRSF1serine/arginine-rich splicing factor 1; Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5’-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5’-RGAAGAAC-3’ (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5’- CGAGGCG-3’ motif in vitro. Three copies of the octame [...] (248 aa)
SNRNP40small nuclear ribonucleoprotein 40kDa (U5); Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs (357 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
SNRPFsmall nuclear ribonucleoprotein polypeptide F; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5 (86 aa)
EIF4A3eukaryotic translation initiation factor 4A3; ATP-dependent RNA helicase. Component of a splicing- dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction [...] (411 aa)
RPS11ribosomal protein S11 (158 aa)
NUDT21nudix (nucleoside diphosphate linked moiety X)-type motif 21; Component of the cleavage factor Im (CFIm) complex that plays a key role in pre-mRNA 3’-processing. Involved in association with CPSF6 or CPSF7 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. NUDT21/CPSF5 binds to cleavage and polyadenylation RNA substrates. The homodimer mediates simultaneous sequence-specific recognition of two 5’-UGUA-3’ elements within the pre-mRNA. Binds to, but does not hydrolyze mono- and di-adenosine nucleotides. May have a role in mRNA export (227 aa)
SRRM2serine/arginine repetitive matrix 2 (2752 aa)
KLF13Kruppel-like factor 13; Represses transcription by binding to the BTE site, a GC-rich DNA element, in competition with the activator SP1. It also represses transcription by interacting with the corepressor Sin3A and HDAC1. Activates RANTES expression in T-cells (288 aa)
PRPF8PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae); Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5’ and the 3’ splice site (2335 aa)
SNRPNsmall nuclear ribonucleoprotein polypeptide N; May be involved in tissue-specific alternative RNA processing events (240 aa)
SART1squamous cell carcinoma antigen recognized by T cells; Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA (800 aa)
DDX23DEAD (Asp-Glu-Ala-Asp) box polypeptide 23; Involved in pre-mRNA splicing and its phosphorylated form (by SRPK2) is required for spliceosomal B complex formation (820 aa)
USP39ubiquitin specific peptidase 39 (565 aa)
SNRNP200small nuclear ribonucleoprotein 200kDa (U5); RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome (2136 aa)
PRPF4BPRP4 pre-mRNA processing factor 4 homolog B (yeast); Has a role in pre-mRNA splicing. Phosphorylates SF2/ASF (1007 aa)
RRP1Bribosomal RNA processing 1 homolog B (S. cerevisiae) (758 aa)
UBCubiquitin C (685 aa)
RPL5ribosomal protein L5; Required for rRNA maturation and formation of the 60S ribosomal subunits. This protein binds 5S RNA (297 aa)
MAGOHmago-nashi homolog, proliferation-associated (Drosophila); Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mR [...] (146 aa)
PRPF4PRP4 pre-mRNA processing factor 4 homolog (yeast); Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome (522 aa)
SRPK2SRSF protein kinase 2; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression. This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression. Phosphorylates ACIN1, and [...] (699 aa)
EFTUD2elongation factor Tu GTP binding domain containing 2; Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP (972 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (45%)