Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
GFM1 GFM1 RPL5 RPL5 EFTUD1 EFTUD1 RPS11 RPS11 GFM2 GFM2 SRPK3 SRPK3 EIF4A3 EIF4A3 EEF2 EEF2 PRPF8 PRPF8 MAGOH MAGOH PNN PNN PRPF6 PRPF6 EFTUD2 EFTUD2 LUC7L2 LUC7L2 SNRPB SNRPB PRPF4B PRPF4B NUDT21 NUDT21 RWDD2A RWDD2A PRPF4 PRPF4 LUC7L LUC7L KLF13 KLF13 SUPT16H SUPT16H SRPK2 SRPK2 USP39 USP39 TSR3 TSR3 ZRANB2 ZRANB2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
TSR3TSR3, 20S rRNA accumulation, homolog (S. cerevisiae); Probable pre-rRNA processing protein involved in ribosome biogenesis (By similarity) (312 aa)
SUPT16Hsuppressor of Ty 16 homolog (S. cerevisiae); Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the [...] (1047 aa)
PNNpinin, desmosome associated protein (717 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
EFTUD1elongation factor Tu GTP binding domain containing 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits (1120 aa)
EIF4A3eukaryotic translation initiation factor 4A3; ATP-dependent RNA helicase. Component of a splicing- dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction [...] (411 aa)
RPS11ribosomal protein S11 (158 aa)
LUC7LLUC7-like (S. cerevisiae); May bind to RNA via its Arg/Ser-rich domain (371 aa)
GFM2G elongation factor, mitochondrial 2; Mitochondrial GTPase that mediates the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis. Acts in collaboration with MRRF. GTP hydrolysis follows the ribosome disassembly and probably occurs on the ribosome large subunit. Not involved in the GTP-dependent ribosomal translocation step during translation elongation (779 aa)
NUDT21nudix (nucleoside diphosphate linked moiety X)-type motif 21; Component of the cleavage factor Im (CFIm) complex that plays a key role in pre-mRNA 3’-processing. Involved in association with CPSF6 or CPSF7 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. NUDT21/CPSF5 binds to cleavage and polyadenylation RNA substrates. The homodimer mediates simultaneous sequence-specific recognition of two 5’-UGUA-3’ elements within the pre-mRNA. Binds to, but does not hydrolyze mono- and di-adenosine nucleotides. May have a role in mRNA export (227 aa)
KLF13Kruppel-like factor 13; Represses transcription by binding to the BTE site, a GC-rich DNA element, in competition with the activator SP1. It also represses transcription by interacting with the corepressor Sin3A and HDAC1. Activates RANTES expression in T-cells (288 aa)
PRPF8PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae); Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5’ and the 3’ splice site (2335 aa)
EEF2eukaryotic translation elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (858 aa)
USP39ubiquitin specific peptidase 39 (565 aa)
PRPF4BPRP4 pre-mRNA processing factor 4 homolog B (yeast); Has a role in pre-mRNA splicing. Phosphorylates SF2/ASF (1007 aa)
LUC7L2LUC7-like 2 (S. cerevisiae); May bind to RNA via its Arg/Ser-rich domain (392 aa)
RWDD2ARWD domain containing 2A (292 aa)
SRPK3SRSF protein kinase 3; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains. Phosphorylates the SR splicing factor SRSF1 and the lamin-B receptor (LBR) in vitro. Required for normal muscle development (By similarity) (567 aa)
RPL5ribosomal protein L5; Required for rRNA maturation and formation of the 60S ribosomal subunits. This protein binds 5S RNA (297 aa)
ZRANB2zinc finger, RAN-binding domain containing 2; Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. May interfere with constitutive 5’- splice site selection (330 aa)
MAGOHmago-nashi homolog, proliferation-associated (Drosophila); Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mR [...] (146 aa)
PRPF4PRP4 pre-mRNA processing factor 4 homolog (yeast); Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome (522 aa)
SRPK2SRSF protein kinase 2; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression. This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression. Phosphorylates ACIN1, and [...] (699 aa)
EFTUD2elongation factor Tu GTP binding domain containing 2; Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP (972 aa)
SNRPBsmall nuclear ribonucleoprotein polypeptides B and B1; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5. May have a functional role in the pre-mRNA splicing or in snRNP structure. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (By similarity) (240 aa)
GFM1G elongation factor, mitochondrial 1; Mitochondrial GTPase that catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A- site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Does not mediate the disassembly of ribosomes from messenger RNA at the termination of m [...] (751 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (49%)