Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
ACADL ACADL FADS2 FADS2 FASN FASN ELOVL6 ELOVL6 CPT1C CPT1C CPT1A CPT1A CPT1B CPT1B ACSL1 ACSL1 C15orf48 C15orf48 LPL LPL ACSL5 ACSL5 PNPLA3 PNPLA3 PNPLA2 PNPLA2 PPT1 PPT1 ACSBG2 ACSBG2 ACSL6 ACSL6 MGLL MGLL ACSBG1 ACSBG1 PNLIPRP3 PNLIPRP3 ACSL4 ACSL4 LIPG LIPG LIPC LIPC CEL CEL PNLIP PNLIP PPT2 PPT2 PNLIPRP1 PNLIPRP1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PNPLA3patatin-like phospholipase domain containing 3; Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities (481 aa)
ACADLacyl-CoA dehydrogenase, long chain (430 aa)
ACSBG2acyl-CoA synthetase bubblegum family member 2; Mediates activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Able to activate long-chain fatty acids. Also able to activate very long-chain fatty acids; however, the relevance of such activity is unclear in vivo. Has increased ability to activate oleic and linoleic acid. May play a role in spermatogenesis (666 aa)
ACSBG1acyl-CoA synthetase bubblegum family member 1; Mediates activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Able to activate long-chain fatty acids. Also able to activate very long-chain fatty acids; however, the relevance of such activity is unclear in vivo. Can activate diverse saturated, monosaturated and polyunsaturated fatty acids (724 aa)
LIPGlipase, endothelial; Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin (500 aa)
MGLLmonoglyceride lipase; Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2-arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain (By similarity). Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth (313 aa)
CPT1Acarnitine palmitoyltransferase 1A (liver); Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion. Plays an important role in triglyceride metabolism (773 aa)
FADS2fatty acid desaturase 2; Component of a lipid metabolic pathway that catalyzes biosynthesis of highly unsaturated fatty acids (HUFA) from precursor essential polyunsaturated fatty acids (PUFA) linoleic acid (LA) (18-2n-6) and alpha-linolenic acid (ALA) (18-3n-3). Catalyzes the first and rate limiting step in this pathway which is the desaturation of LA (18-2n-6) and ALA (18-3n-3) into gamma- linoleic acid (GLA) (18-3n-6) and stearidonic acid (18-4n-3) respectively and other desaturation steps. Highly unsaturated fatty acids (HUFA) play pivotal roles in many biological functions. It cat [...] (444 aa)
ACSL1acyl-CoA synthetase long-chain family member 1; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitoleate, oleate and linoleate (698 aa)
ACSL6acyl-CoA synthetase long-chain family member 6; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid (722 aa)
LIPClipase, hepatic; Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin (499 aa)
FASNfatty acid synthase (2511 aa)
ELOVL6ELOVL fatty acid elongase 6; Condensing enzyme that catalyzes the synthesis of saturated and monounsaturated fatty acids. Highest activity toward C16-0 acyl-CoAs (265 aa)
LPLlipoprotein lipase; The primary function of this lipase is the hydrolysis of triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium (By similarity) (475 aa)
CPT1Bcarnitine palmitoyltransferase 1B (muscle) (772 aa)
CPT1Ccarnitine palmitoyltransferase 1C (803 aa)
PNPLA2patatin-like phospholipase domain containing 2; Catalyzes the initial step in triglyceride hydrolysis in adipocyte and non-adipocyte lipid droplets. Also has acylglycerol transacylase activity. May act coordinately with LIPE/HLS within the lipolytic cascade. Regulates adiposome size and may be involved in the degradation of adiposomes. May play an important role in energy homeostasis. May play a role in the response of the organism to starvation, enhancing hydrolysis of triglycerides and providing free fatty acids to other tissues to be oxidized in situations of energy depletion (504 aa)
ACSL4acyl-CoA synthetase long-chain family member 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses arachidonate and eicosapentaenoate as substrates (711 aa)
C15orf48chromosome 15 open reading frame 48 (83 aa)
ACSL5acyl-CoA synthetase long-chain family member 5; Acyl-CoA synthetases (ACSL) activate long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL5 may activate fatty acids from exogenous sources for the synthesis of triacylglycerol destined for intracellular storage (By similarity). Utilizes a wide range of saturated fatty acids with a preference for C16-C18 unsaturated fatty acids (By similarity). It was suggested that it may also stimulate fatty acid oxidation (By similarity). At the villus tip of the crypt-villus axis of the small intestine [...] (739 aa)
PNLIPRP1pancreatic lipase-related protein 1; May function as inhibitor of dietary triglyceride digestion. Lacks detectable lipase activity towards triglycerides, diglycerides, phosphatidylcholine, galactolipids or cholesterol esters (in vitro) (By similarity) (467 aa)
PPT2palmitoyl-protein thioesterase 2 (308 aa)
PNLIPpancreatic lipase (465 aa)
PNLIPRP3pancreatic lipase-related protein 3 (467 aa)
CELcarboxyl ester lipase (bile salt-stimulated lipase); Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides (756 aa)
PPT1palmitoyl-protein thioesterase 1; Removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. Prefers acyl chain lengths of 14 to 18 carbons (306 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (45%)