Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
EIF3F EIF3F EIF2S3 EIF2S3 EIF4EBP3 EIF4EBP3 EIF1 EIF1 EIF4B EIF4B EIF4A3 EIF4A3 CASP9 CASP9 EIF4G3 EIF4G3 CASP2 CASP2 EIF4E3 EIF4E3 EIF4G1 EIF4G1 ISG15 ISG15 EIF4G2 EIF4G2 EIF4A1 EIF4A1 CASP7 CASP7 ARIH1 ARIH1 CASP10 CASP10 UBE2L6 UBE2L6 HERC5 HERC5 PTBP2 PTBP2 PTBP1 PTBP1 CASP4 CASP4 CASP8 CASP8 CASP5 CASP5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
EIF2S3eukaryotic translation initiation factor 2, subunit 3 gamma, 52kDa; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a re [...] (472 aa)
EIF4Beukaryotic translation initiation factor 4B; Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5’- terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F (611 aa)
HERC5HECT and RLD domain containing E3 ubiquitin protein ligase 5; Major E3 ligase for ISG15 conjugation. Acts as a positive regulator of innate antiviral response in cells induced by interferon. Makes part of the ISGylation machinery that recognizes target proteins in a broad and relatively non-specific manner. Catalyzes ISGylation of IRF3 which results in sustained activation, it attenuates IRF3-PIN1 interaction, which antagonizes IRF3 ubiquitination and degradation, and boosts the antiviral response. Catalyzes ISGylation of influenza A viral NS1 which attenuates virulence; ISGylated NS1 [...] (1024 aa)
EIF4A3eukaryotic translation initiation factor 4A3; ATP-dependent RNA helicase. Component of a splicing- dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction [...] (411 aa)
CASP10caspase 10, apoptosis-related cysteine peptidase; Involved in the activation cascade of caspases responsible for apoptosis execution. Recruited to both Fas- and TNFR-1 receptors in a FADD dependent manner. May participate in the granzyme B apoptotic pathways. Cleaves and activates caspase- 3, -4, -6, -7, -8, and -9. Hydrolyzes the small- molecule substrates, Tyr-Val-Ala-Asp-|-AMC and Asp-Glu-Val-Asp-|-AMC (522 aa)
UBE2L6ubiquitin-conjugating enzyme E2L 6; Catalyzes the covalent attachment of ubiquitin or ISG15 to other proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Promotes ubiquitination and subsequent proteasomal degradation of FLT3 (153 aa)
EIF4A1eukaryotic translation initiation factor 4A1; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon (406 aa)
EIF4EBP3eukaryotic translation initiation factor 4E binding protein 3; Regulates eIF4E activity by preventing its assembly into the eIF4F complex (100 aa)
EIF3Feukaryotic translation initiation factor 3, subunit F; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (357 aa)
CASP2caspase 2, apoptosis-related cysteine peptidase (452 aa)
CASP9caspase 9, apoptosis-related cysteine peptidase (416 aa)
EIF4G1eukaryotic translation initiation factor 4 gamma, 1; Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome (1606 aa)
EIF4G2eukaryotic translation initiation factor 4 gamma, 2 (907 aa)
PTBP1polypyrimidine tract binding protein 1; Plays a role in pre-mRNA splicing and in the regulation of alternative splicing events. Activates exon skipping of its own pre-mRNA during muscle cell differentiation. Binds to the polypyrimidine tract of introns. May promote RNA looping when bound to two separate polypyrimidine tracts in the same pre-mRNA. May promote the binding of U2 snRNP to pre-mRNA. Cooperates with RAVER1 to modulate switching between mutually exclusive exons during maturation of the TPM1 pre-mRNA. Represses the splicing of MAPT/Tau exon 10 (557 aa)
CASP8caspase 8, apoptosis-related cysteine peptidase (538 aa)
CASP7caspase 7, apoptosis-related cysteine peptidase (336 aa)
EIF4G3eukaryotic translation initiation factor 4 gamma, 3; Probable component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome. Thought to be a functional homolog of EIF4G1 (1591 aa)
ISG15ISG15 ubiquitin-like modifier; Ubiquitin-like protein that is conjugated to intracellular target proteins after IFN-alpha or IFN-beta stimulation. Its enzymatic pathway is partially distinct from that of ubiquitin, differing in substrate specificity and interaction with ligating enzymes. ISG15 conjugation pathway uses a dedicated E1 enzyme, but seems to converge with the Ub conjugation pathway at the level of a specific E2 enzyme. Targets include STAT1, SERPINA3G/SPI2A, JAK1, MAPK3/ERK1, PLCG1, EIF2AK2/PKR, MX1/MxA, and RIG-1. Deconjugated by USP18/UBP43. Shows specific chemotactic act [...] (165 aa)
ARIH1ariadne homolog, ubiquitin-conjugating enzyme E2 binding protein, 1 (Drosophila); E3 ubiquitin-protein ligase, which catalyzes polyubiquitination of target proteins together with ubiquitin- conjugating enzyme E2 UBE2L3. May play a role in protein translation by mediating polyubiquitination of EIF4E2, leading to its subsequent degradation (557 aa)
CASP5caspase 5, apoptosis-related cysteine peptidase (447 aa)
CASP4caspase 4, apoptosis-related cysteine peptidase; Involved in the activation cascade of caspases responsible for apoptosis execution. Cleaves caspase-1 (377 aa)
EIF4E3eukaryotic translation initiation factor 4E family member 3; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis. May act as an inhibitor of EIF4E1 activity (By similarity) (224 aa)
PTBP2polypyrimidine tract binding protein 2; RNA-binding protein which binds to intronic polypyrimidine tracts and mediates negative regulation of exons splicing. May antagonize in a tissue-specific manner the ability of NOVA1 to activate exon selection. Beside its function in pre- mRNA splicing, plays also a role in the regulation of translation. Isoform 5 has a reduced affinity for RNA (531 aa)
EIF1eukaryotic translation initiation factor 1; Necessary for scanning and involved in initiation site selection. Promotes the assembly of 48S ribosomal complexes at the authentic initiation codon of a conventional capped mRNA (113 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (23%)