Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PYGO1 PYGO1 MLL2 MLL2 TCF7L1 TCF7L1 TCF7 TCF7 PYGO2 PYGO2 ASH2L ASH2L CTBP2 CTBP2 TCF7L2 TCF7L2 RUVBL1 RUVBL1 MEN1 MEN1 LEO1 LEO1 TRRAP TRRAP HIST3H3 HIST3H3 KAT5 KAT5 SOX13 SOX13 HIST2H2BE HIST2H2BE SOX4 SOX4 HIST1H2BD HIST1H2BD HIST1H2BN HIST1H2BN HIST1H2BH HIST1H2BH HIST3H2BB HIST3H2BB HIST2H3A HIST2H3A HIST1H2BL HIST1H2BL HIST1H2BB HIST1H2BB HIST1H2BO HIST1H2BO HIST1H2BM HIST1H2BM
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SOX4SRY (sex determining region Y)-box 4; Transcriptional activator that binds with high affinity to the T-cell enhancer motif 5’-AACAAAG-3’ motif (474 aa)
TCF7L1transcription factor 7-like 1 (T-cell specific, HMG-box); Participates in the Wnt signaling pathway. Binds to DNA and acts as a repressor in the absence of CTNNB1, and as an activator in its presence. Necessary for the terminal differentiation of epidermal cells, the formation of keratohyalin granules and the development of the barrier function of the epidermis (By similarity). Down-regulates NQO1, leading to increased mitomycin c resistance (588 aa)
HIST1H2BDhistone cluster 1, H2bd; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity) (126 aa)
LEO1Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae); Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non- phosphorylated and ’Ser-2’- and ’Ser-5’-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is r [...] (666 aa)
MLL2myeloid/lymphoid or mixed-lineage leukemia 2; Histone methyltransferase. Methylates ’Lys-4’ of histone H3 (H3K4me). H3K4me represents a specific tag for epigenetic transcriptional activation. Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (5537 aa)
PYGO1pygopus homolog 1 (Drosophila); Involved in signal transduction through the Wnt pathway (419 aa)
HIST1H2BOhistone cluster 1, H2bo; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
CTBP2C-terminal binding protein 2; Corepressor targeting diverse transcription regulators. Functions in brown adipose tissue (BAT) differentiation (By similarity) (985 aa)
RUVBL1RuvB-like 1 (E. coli); May be able to bind plasminogen at cell surface and enhance plasminogen activation (456 aa)
MEN1multiple endocrine neoplasia I (615 aa)
KAT5K(lysine) acetyltransferase 5 (546 aa)
TCF7transcription factor 7 (T-cell specific, HMG-box); Transcriptional activator involved in T-cell lymphocyte differentiation. Necessary for the survival of CD4(+) CD8(+) immature thymocytes. Isoforms lacking the N-terminal CTNNB1 binding domain cannot fulfill this role. Binds to the T- lymphocyte-specific enhancer element (5’-WWCAAAG-3’) found in the promoter of the CD3E gene. May also act as feedback transcriptional repressor of CTNNB1 and TCF7L2 target genes. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7 and CTNNB1 (384 aa)
ASH2Lash2 (absent, small, or homeotic)-like (Drosophila); Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates ’Lys-4’ of histone H3, but not if the neighboring ’Lys-9’ residue is already methylated. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at ’Lys-4’ of histone H3. May function as a transcriptional regulator. May play a role in hematopoiesis (628 aa)
TRRAPtransformation/transcription domain-associated protein; Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription acti [...] (3830 aa)
HIST1H2BHhistone cluster 1, H2bh; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BBhistone cluster 1, H2bb; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BMhistone cluster 1, H2bm; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity) (126 aa)
HIST3H3histone cluster 3, H3; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
SOX13SRY (sex determining region Y)-box 13; Binds to the sequence 5’-AACAAT-3’ (By similarity) (622 aa)
PYGO2pygopus homolog 2 (Drosophila); Involved in signal transduction through the Wnt pathway (406 aa)
HIST2H2BEhistone cluster 2, H2be (126 aa)
HIST1H2BLhistone cluster 1, H2bl; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST3H2BBhistone cluster 3, H2bb; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST1H2BNhistone cluster 1, H2bn; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (126 aa)
HIST2H3Ahistone cluster 2, H3a (136 aa)
TCF7L2transcription factor 7-like 2 (T-cell specific, HMG-box) (602 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (50%)