Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SF3B1 SF3B1 SF3B2 SF3B2 SNRPA SNRPA NONO NONO HSPA1A HSPA1A HDAC2 HDAC2 SUMO2 SUMO2 ESR2 ESR2 TP53 TP53 RARA RARA CBX5 CBX5 AR AR UBC UBC CBX3 CBX3 HDAC1 HDAC1 ESR1 ESR1 TRIM24 TRIM24 TRIM28 TRIM28 KLK3 KLK3 SUMO1 SUMO1 ZNF10 ZNF10 NR3C2 NR3C2 TRIM33 TRIM33 CDK12 CDK12 TAF7 TAF7 TAF11 TAF11
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ESR1estrogen receptor 1; Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA- binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial [...] (595 aa)
CBX5chromobox homolog 5; Component of heterochromatin that recognizes and binds histone H3 tails methylated at ’Lys-9’ (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when ’Tyr-41’ of histone H3 is phosphorylated (H3Y41ph). Can interact with lamin-B receptor (LBR). This interaction can contribute to the association of the heterochromatin with the inner nuclear membrane. Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins (191 aa)
SNRPAsmall nuclear ribonucleoprotein polypeptide A; Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5’-UGCAC-3’ motif in vitro (282 aa)
ZNF10zinc finger protein 10; May be involved in transcriptional regulation (573 aa)
TRIM28tripartite motif containing 28; Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at ’Lys-9’ (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 ’Lys-9 and ’Lys-14’ acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitm [...] (835 aa)
RARAretinoic acid receptor, alpha; Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5’-AGGTCA-3’ sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcrip [...] (462 aa)
TP53tumor protein p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (By similarity) (393 aa)
NONOnon-POU domain containing, octamer-binding; DNA- and RNA binding protein, involved in several nuclear processes. Binds the conventional octamer sequence in double stranded DNA. Also binds single-stranded DNA and RNA at a site independent of the duplex site (By similarity). Involved in pre-mRNA splicing, probably as a heterodimer with SFPQ. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3’ side of U5 snRNA stem 1b. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. The SFPQ-NONO heteromer may be in [...] (471 aa)
TAF7TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 55kDa; Functions as a component of the DNA-binding general transcription factor complex TFIID, a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. Present in both of the previously described TFIID species which either lack or contain TAFII30 (TFIID alpha and TFIID beta respectively) (349 aa)
KLK3kallikrein-related peptidase 3; Hydrolyzes semenogelin-1 thus leading to the liquefaction of the seminal coagulum (261 aa)
SF3B2splicing factor 3b, subunit 2, 145kDa; Subunit of the splicing factor SF3B required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (895 aa)
SF3B1splicing factor 3b, subunit 1, 155kDa; Subunit of the splicing factor SF3B required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (1304 aa)
CBX3chromobox homolog 3; Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at ’Lys-9’, leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins (183 aa)
TRIM24tripartite motif containing 24; Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at ’Lys-4’ (H3K4me0) and acetylated at ’Lys-23’ (H3K23ac). Has E3 protein-ubiquitin ligase activity. Promotes ubiquitination and proteasomal degradation of p53/TP53. Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. U [...] (1050 aa)
NR3C2nuclear receptor subfamily 3, group C, member 2; Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels (984 aa)
ESR2estrogen receptor 2 (ER beta) (530 aa)
UBCubiquitin C (685 aa)
TRIM33tripartite motif containing 33; Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed-16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as a [...] (1127 aa)
TAF11TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa; Core TAFII present in both of the previously described TFIID species which either lack or contain TAFII30 (TFIID alpha and TFIID beta respectively) (211 aa)
HDAC1histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST- mediated transcription in resting neurons. Upon calcium s [...] (482 aa)
ARandrogen receptor; Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3 (920 aa)
HSPA1Aheat shock 70kDa protein 1A (641 aa)
SUMO1SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae); Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. [...] (101 aa)
CDK12cyclin-dependent kinase 12; Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogn inhibitors (1490 aa)
SUMO2SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae); Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduc [...] (95 aa)
HDAC2histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor complex composed o [...] (488 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (49%)