Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
AKR1B10 AKR1B10 AKR1B1 AKR1B1 GLO1 GLO1 GRHPR GRHPR TUBGCP4 TUBGCP4 ME2 ME2 SDSL SDSL AGXT AGXT SDS SDS CTH CTH GCAT GCAT ME1 ME1 SHMT2 SHMT2 SPTLC1 SPTLC1 UBC UBC SRR SRR CBS CBS SHMT1 SHMT1 SPTLC2 SPTLC2 ME3 ME3 SPTLC3 SPTLC3 HSPD1 HSPD1 EPRS EPRS PSPH PSPH EEF1G EEF1G ENSG00000232856 ENSG00000232856
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SPTLC2serine palmitoyltransferase, long chain base subunit 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate (562 aa)
SDSserine dehydratase (328 aa)
SPTLC1serine palmitoyltransferase, long chain base subunit 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1- SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isoz [...] (473 aa)
PSPHphosphoserine phosphatase; Catalyzes the last step in the biosynthesis of serine from carbohydrates. The reaction mechanism proceeds via the formation of a phosphoryl-enzyme intermediates (225 aa)
AKR1B1aldo-keto reductase family 1, member B1 (aldose reductase); Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols with a broad range of catalytic efficiencies (316 aa)
AGXTalanine-glyoxylate aminotransferase (392 aa)
GRHPRglyoxylate reductase/hydroxypyruvate reductase; Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate oxidizes D-glycerate to hydroxypyruvate (328 aa)
SHMT1serine hydroxymethyltransferase 1 (soluble); Interconversion of serine and glycine (By similarity) (483 aa)
ME2malic enzyme 2, NAD(+)-dependent, mitochondrial (584 aa)
EEF1Geukaryotic translation elongation factor 1 gamma; Probably plays a role in anchoring the complex to other cellular components (437 aa)
SHMT2serine hydroxymethyltransferase 2 (mitochondrial); Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA (504 aa)
SRRserine racemase; Catalyzes the synthesis of D-serine from L-serine. D- serine is a key coagonist with glutamate at NMDA receptors. Has dehydratase activity towards both L-serine and D-serine (340 aa)
HSPD1heat shock 60kDa protein 1 (chaperonin); Implicated in mitochondrial protein import and macromolecular assembly. May facilitate the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (573 aa)
SDSLserine dehydratase-like; Has low serine dehydratase and threonine dehydratase activity (329 aa)
CBScystathionine-beta-synthase; Only known pyridoxal phosphate-dependent enzyme that contains heme. Important regulator of hydrogen sulfide, especially in the brain, utilizing cysteine instead of serine to catalyze the formation of hydrogen sulfide. Hydrogen sulfide is a gastratransmitter with signaling and cytoprotective effects such as acting as a neuromodulator in the brain to protect neurons against hypoxic injury (By similarity) (551 aa)
UBCubiquitin C (685 aa)
AKR1B10aldo-keto reductase family 1, member B10 (aldose reductase); Acts as all-trans-retinaldehyde reductase. Can efficiently reduce aliphatic and aromatic aldehydes, and is less active on hexoses (in vitro). May be responsible for detoxification of reactive aldehydes in the digested food before the nutrients are passed on to other organs (316 aa)
ME3malic enzyme 3, NADP(+)-dependent, mitochondrial (604 aa)
EPRSglutamyl-prolyl-tRNA synthetase (1512 aa)
ME1malic enzyme 1, NADP(+)-dependent, cytosolic (572 aa)
CTHcystathionase (cystathionine gamma-lyase); Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration [...] (405 aa)
GLO1glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. Involved in the regulation of TNF-induced transcriptional activity of NF- kappa-B (184 aa)
GCATglycine C-acetyltransferase (445 aa)
SPTLC3serine palmitoyltransferase, long chain base subunit 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, while the SPTLC1-SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference (552 aa)
ENSG00000232856hsa-mir-3654 (206 aa)
TUBGCP4tubulin, gamma complex associated protein 4; Gamma-tubulin complex is necessary for microtubule nucleation at the centrosome (666 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (53%)