Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
AGXT AGXT PSPH PSPH SRR SRR SDS SDS SPTLC3 SPTLC3 SPTLC1 SPTLC1 RANBP9 RANBP9 SDSL SDSL SPTLC2 SPTLC2 SHMT2 SHMT2 UBE2I UBE2I CBS CBS SHMT1 SHMT1 HTT HTT UBC UBC AHCY AHCY SUMO1 SUMO1 UBB UBB PIAS1 PIAS1 CTH CTH AHCYL1 AHCYL1 MTR MTR RAD23B RAD23B AHCYL2 AHCYL2 BHMT BHMT
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
RANBP9RAN binding protein 9; May act as an adapter protein to couple membrane receptors to intracellular signaling pathways. May be involved in signaling of ITGB2/LFA-1 and other integrins. Enhances HGF-MET signaling by recruiting Sos and activating the Ras pathway. Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but not affect estrogen-induced transactivation. Stabilizes TP73 isoform Alpha, probably by inhibiting its ubiquitination, and increases its proapoptotic activity. Inhibits the kinase activity o [...] (729 aa)
SPTLC2serine palmitoyltransferase, long chain base subunit 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate (562 aa)
AHCYadenosylhomocysteinase; Adenosylhomocysteine is a competitive inhibitor of S- adenosyl-L-methionine-dependent methyl transferase reactions; therefore adenosylhomocysteinase may play a key role in the control of methylations via regulation of the intracellular concentration of adenosylhomocysteine (432 aa)
PIAS1protein inhibitor of activated STAT, 1; Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor. Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway. In vitro, binds A/T-rich DNA. The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context. Together with PRMT1, may repress STAT1 transcriptional activ [...] (651 aa)
SDSserine dehydratase (328 aa)
SPTLC1serine palmitoyltransferase, long chain base subunit 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1- SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isoz [...] (473 aa)
BHMTbetaine--homocysteine S-methyltransferase; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline (406 aa)
PSPHphosphoserine phosphatase; Catalyzes the last step in the biosynthesis of serine from carbohydrates. The reaction mechanism proceeds via the formation of a phosphoryl-enzyme intermediates (225 aa)
AGXTalanine-glyoxylate aminotransferase (392 aa)
UBBubiquitin B (229 aa)
AHCYL2adenosylhomocysteinase-like 2 (611 aa)
SHMT1serine hydroxymethyltransferase 1 (soluble); Interconversion of serine and glycine (By similarity) (483 aa)
UBE2Iubiquitin-conjugating enzyme E2I; Accepts the ubiquitin-like proteins SUMO1, SUMO2, SUMO3 and SUMO4 from the UBLE1A-UBLE1B E1 complex and catalyzes their covalent attachment to other proteins with the help of an E3 ligase such as RANBP2 or CBX4. Can catalyze the formation of poly- SUMO chains. Necessary for sumoylation of FOXL2 and KAT5. Essential for nuclear architecture and chromosome segregation. Sumoylates p53/TP53 at ’Lys-386’ (By similarity) (158 aa)
SHMT2serine hydroxymethyltransferase 2 (mitochondrial); Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA (504 aa)
SRRserine racemase; Catalyzes the synthesis of D-serine from L-serine. D- serine is a key coagonist with glutamate at NMDA receptors. Has dehydratase activity towards both L-serine and D-serine (340 aa)
SDSLserine dehydratase-like; Has low serine dehydratase and threonine dehydratase activity (329 aa)
CBScystathionine-beta-synthase; Only known pyridoxal phosphate-dependent enzyme that contains heme. Important regulator of hydrogen sulfide, especially in the brain, utilizing cysteine instead of serine to catalyze the formation of hydrogen sulfide. Hydrogen sulfide is a gastratransmitter with signaling and cytoprotective effects such as acting as a neuromodulator in the brain to protect neurons against hypoxic injury (By similarity) (551 aa)
UBCubiquitin C (685 aa)
HTThuntingtin; May play a role in microtubule-mediated transport or vesicle function (3142 aa)
RAD23BRAD23 homolog B (S. cerevisiae); Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum- associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome (409 aa)
MTR5-methyltetrahydrofolate-homocysteine methyltransferase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity) (1265 aa)
AHCYL1adenosylhomocysteinase-like 1 (530 aa)
CTHcystathionase (cystathionine gamma-lyase); Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration [...] (405 aa)
SUMO1SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae); Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. [...] (101 aa)
SPTLC3serine palmitoyltransferase, long chain base subunit 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, while the SPTLC1-SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference (552 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (50%)