Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
MPPE1 MPPE1 GNAO1 GNAO1 MAPK14 MAPK14 UBB UBB SCN11A SCN11A NEDD4 NEDD4 SCNN1G SCNN1G KCNA2 KCNA2 SCN9A SCN9A SCN8A SCN8A SCNN1A SCNN1A KCNA4 KCNA4 SCN3A SCN3A SCN10A SCN10A SCNN1B SCNN1B KCNA1 KCNA1 KCNA10 KCNA10 SCN4B SCN4B SCN5A SCN5A SCN2B SCN2B KCNA5 KCNA5 FGF13 FGF13 KCNA3 KCNA3 SCN1B SCN1B SCN3B SCN3B SCN7A SCN7A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
MAPK14mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] (360 aa)
KCNA5potassium voltage-gated channel, shaker-related subfamily, member 5; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. This channel displays rapid activation and slow inactivation. May play a role in regulating the secretion of insulin in normal pancreatic islets. Isoform 2 exhibits a voltage-dependent recovery from inacti [...] (613 aa)
GNAO1guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(o) protein function is not clear. Stimulated by RGS14 (354 aa)
SCN2Bsodium channel, voltage-gated, type II, beta subunit; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity) (215 aa)
SCN3Asodium channel, voltage-gated, type III, alpha subunit (2000 aa)
SCN3Bsodium channel, voltage-gated, type III, beta subunit; Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity) (215 aa)
SCNN1Gsodium channel, non-voltage-gated 1, gamma subunit (649 aa)
UBBubiquitin B (229 aa)
SCN11Asodium channel, voltage-gated, type XI, alpha subunit; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization (1791 aa)
KCNA2potassium voltage-gated channel, shaker-related subfamily, member 2; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (499 aa)
SCN4Bsodium channel, voltage-gated, type IV, beta subunit; Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation (By similarity) (228 aa)
KCNA4potassium voltage-gated channel, shaker-related subfamily, member 4; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (653 aa)
SCN5Asodium channel, voltage-gated, type V, alpha subunit (2016 aa)
NEDD4neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase (1247 aa)
SCNN1Bsodium channel, non-voltage-gated 1, beta subunit; Sodium permeable non-voltage-sensitive ion channel inhibited by the diuretic amiloride. Mediates the electrodiffusion of the luminal sodium (and water, which follows osmotically) through the apical membrane of epithelial cells. Controls the reabsorption of sodium in kidney, colon, lung and sweat glands. Also plays a role in taste perception (640 aa)
SCN8Asodium channel, voltage gated, type VIII, alpha subunit; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation (1980 aa)
SCNN1Asodium channel, non-voltage-gated 1 alpha subunit; Sodium permeable non-voltage-sensitive ion channel inhibited by the diuretic amiloride. Mediates the electrodiffusion of the luminal sodium (and water, which follows osmotically) through the apical membrane of epithelial cells. Controls the reabsorption of sodium in kidney, colon, lung and sweat glands. Also plays a role in taste perception (728 aa)
KCNA3potassium voltage-gated channel, shaker-related subfamily, member 3; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (575 aa)
KCNA10potassium voltage-gated channel, shaker-related subfamily, member 10; Mediates voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. The channel activity is up-regulated by cAMP (511 aa)
FGF13fibroblast growth factor 13; Microtubule-binding protein which directly binds tubulin and is involved in both polymerization and stabilization of microtubules. Through its action on microtubules, may participate to the refinement of axons by negatively regulating axonal and leading processes branching. Plays a crucial role in neuron polarization and migration in the cerebral cortex and the hippocampus (255 aa)
KCNA1potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia); Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (495 aa)
SCN9Asodium channel, voltage-gated, type IX, alpha subunit (1977 aa)
SCN7Asodium channel, voltage-gated, type VII, alpha subunit; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient (1682 aa)
SCN10Asodium channel, voltage-gated, type X, alpha subunit; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Its electrophysiological properties vary depending on the type of the associated beta subunits (in vitro). Plays a role in neuropathic pain mechanisms (By similarity) (1956 aa)
SCN1Bsodium channel, voltage-gated, type I, beta subunit; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (268 aa)
MPPE1metallophosphoesterase 1 (396 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (38%)