Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
NDUFAF7 NDUFAF7 NDUFAF3 NDUFAF3 FOXRED1 FOXRED1 NDUFB3 NDUFB3 NDUFAF6 NDUFAF6 NDUFA12 NDUFA12 NDUFA13 NDUFA13 NDUFS3 NDUFS3 NDUFAF5 NDUFAF5 NDUFB10 NDUFB10 NDUFS7 NDUFS7 NDUFA9 NDUFA9 ECSIT ECSIT NDUFAF1 NDUFAF1 NDUFAB1 NDUFAB1 NDUFS6 NDUFS6 NDUFA2 NDUFA2 NDUFB9 NDUFB9 NDUFAF2 NDUFAF2 NDUFA10 NDUFA10 NDUFA6 NDUFA6 NDUFA11 NDUFA11 NDUFA5 NDUFA5 NDUFS5 NDUFS5 TIMMDC1 TIMMDC1 TMEM126B TMEM126B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NDUFAF7NADH dehydrogenase (ubiquinone) complex I, assembly factor 7; Involved in the assembly or stability of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) (441 aa)
NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa; Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity) (156 aa)
NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (213 aa)
NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (98 aa)
NDUFA2NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (99 aa)
NDUFA10NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (355 aa)
NDUFAF1NADH dehydrogenase (ubiquinone) complex I, assembly factor 1; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) (By similarity) (327 aa)
FOXRED1FAD-dependent oxidoreductase domain containing 1 (486 aa)
NDUFS3NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (264 aa)
NDUFA9NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (377 aa)
NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (172 aa)
ECSITECSIT homolog (Drosophila); Adapter protein of the Toll-like and IL-1 receptor signaling pathway that is involved in the activation of NF-kappa-B via MAP3K1. Promotes proteolytic activation of MAP3K1. Involved in the BMP signaling pathway. Required for normal embryonic development (By similarity) (431 aa)
NDUFS6NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase); Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (124 aa)
NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (179 aa)
NDUFAF2NADH dehydrogenase (ubiquinone) complex I, assembly factor 2; Acts as a molecular chaperone for mitochondrial complex I assembly (169 aa)
NDUFAF3NADH dehydrogenase (ubiquinone) complex I, assembly factor 3; Essential factor for the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) (184 aa)
NDUFA12NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (145 aa)
NDUFA5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (116 aa)
TMEM126Btransmembrane protein 126B; Involved in assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) (By similarity) (230 aa)
NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q reductase); Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (106 aa)
NDUFAF5NADH dehydrogenase (ubiquinone) complex I, assembly factor 5; Involved in the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I, MT-ND1) at early stages. May have methyltransferase activity (345 aa)
NDUFAF6NADH dehydrogenase (ubiquinone) complex I, assembly factor 6; Involved in the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) at early stages. May play a role in the biogenesis of MT-ND1 (333 aa)
NDUFA11NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 11, 14.7kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (228 aa)
TIMMDC1translocase of inner mitochondrial membrane domain containing 1 (285 aa)
NDUFA6NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6, 14kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (154 aa)
NDUFA13NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in CARD15 [...] (144 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (42%)