Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
KSR2 KSR2 BRAF BRAF ID3 ID3 BRCA1 BRCA1 RAF1 RAF1 MAPK3 MAPK3 KSR1 KSR1 JUNB JUNB SRF SRF MAPK11 MAPK11 ID2 ID2 MAPK7 MAPK7 ELK1 ELK1 FOS FOS JUN JUN TBPL1 TBPL1 MAPK8 MAPK8 ELK4 ELK4 JUND JUND TBPL2 TBPL2 TBP TBP BRSK1 BRSK1 ID1 ID1 CDK12 CDK12 ELAVL1 ELAVL1 SIRT7 SIRT7
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
TBPTATA box binding protein; General transcription factor that functions at the core of the DNA-binding multiprotein factor TFIID. Binding of TFIID to the TATA box is the initial transcriptional step of the pre- initiation complex (PIC), playing a role in the activation of eukaryotic genes transcribed by RNA polymerase II. Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1 wi [...] (339 aa)
ID2inhibitor of DNA binding 2, dominant negative helix-loop-helix protein; ID (inhibitor of DNA binding) HLH proteins lack a basic DNA-binding domain but are able to form heterodimers with other HLH proteins, thereby inhibiting DNA binding. ID-2 may be an inhibitor of tissue-specific gene expression (134 aa)
TBPL1TBP-like 1; Does not bind the TATA box. Has DNA-binding ability (186 aa)
ELK1ELK1, member of ETS oncogene family; Stimulates transcription. Binds to purine-rich DNA sequences. Can form a ternary complex with the serum response factor and the ETS and SRF motifs of the fos serum response element (428 aa)
TBPL2TATA box binding protein like 2; Transcription factor required in complex with TAF3 for the differentiation of myoblasts into myocytes. The complex replaces TFIID at specific promoters at an early stage in the differentiation process (By similarity) (375 aa)
RAF1v-raf-1 murine leukemia viral oncogene homolog 1; Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinase [...] (648 aa)
JUNDjun D proto-oncogene; Transcription factor binding AP-1 sites (347 aa)
MAPK3mitogen-activated protein kinase 3; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (379 aa)
SRFserum response factor (c-fos serum response element-binding transcription factor); SRF is a transcription factor that binds to the serum response element (SRE), a short sequence of dyad symmetry located 300 bp to the 5’ of the site of transcription initiation of some genes (such as FOS). Required for cardiac differentiation and maturation (508 aa)
BRAFv-raf murine sarcoma viral oncogene homolog B1 (766 aa)
JUNBjun B proto-oncogene; Transcription factor involved in regulating gene activity following the primary growth factor response. Binds to the DNA sequence 5’-TGA[CG]TCA-3’ (347 aa)
FOSFBJ murine osteosarcoma viral oncogene homolog; Nuclear phosphoprotein which forms a tight but non- covalently linked complex with the JUN/AP-1 transcription factor. In the heterodimer, FOS and JUN/AP-1 basic regions each seems to interact with symmetrical DNA half sites. On TGF-beta activation, forms a multimeric SMAD3/SMAD4/JUN/FOS complex at the AP1/SMAD- binding site to regulate TGF-beta-mediated signaling. Has a critical function in regulating the development of cells destined to form and maintain the skeleton. It is thought to have an important role in signal transduction, cell p [...] (380 aa)
BRSK1BR serine/threonine kinase 1; Serine/threonine-protein kinase that plays a key role in polarization of neurons and centrosome duplication. Phosphorylates CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at ’Thr-529’ and ’Ser-579’. Also regulates neuron polarization by mediating phosphorylation of WEE1 at ’Ser-642’ in post-mitotic neurons, leading to down-regulate WEE1 activit [...] (778 aa)
MAPK7mitogen-activated protein kinase 7; Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras- independent and MAP2K5-dependent pathway. May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/E [...] (816 aa)
KSR1kinase suppressor of ras 1; Location-regulated scaffolding protein connecting MEK to RAF. Promotes MEK and RAF phosphorylation and activity through assembly of an activated signaling complex. By itself, it has no demonstrated kinase activity (923 aa)
SIRT7sirtuin 7; NAD-dependent protein deacetylase that specifically mediates deacetylation of histone H3 at ’Lys-18’ (H3K18Ac). In contrast to other histone deacetylases, displays selectivity for a single histone mark, H3K18Ac, directly linked to control of gene expression. H3K18Ac is mainly present around the transcription start site of genes and has been linked to activation of nuclear hormone receptors. SIRT7 thereby acts as a transcription repressor. Moreover, H3K18 hypoacetylation has been reported as a marker of malignancy in various cancers and seems to maintain the transformed pheno [...] (400 aa)
MAPK11mitogen-activated protein kinase 11; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MA [...] (364 aa)
KSR2kinase suppressor of ras 2; Location-regulated scaffold connecting MEK to RAF. Blocks MAP3K8 kinase activity and MAP3K8-mediated signaling. Acts as a negative regulator of MAP3K3-mediated activation of ERK, JNK and NF-kappa-B pathways, inhibiting MAP3K3-mediated interleukin-8 production (950 aa)
ELK4ELK4, ETS-domain protein (SRF accessory protein 1); Involved in both transcriptional activation and repression. Interaction with SIRT7 leads to recruitment and stabilization of SIRT7 at promoters, followed by deacetylation of histone H3 at ’Lys-18’ (H3K18Ac) and subsequent transcription repression. Forms a ternary complex with the serum response factor (SRF). Requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5’side of SRF, but does not bind DNA autonomously (431 aa)
MAPK8mitogen-activated protein kinase 8; Serine/threonine-protein kinase involved in various processes such as cell proliferation, differentiation, migration, transformation and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK8/JNK1. In turn, MAPK8/JNK1 phosphorylates a number of transcription factors, primarily components of AP-1 such as JU [...] (427 aa)
JUNjun proto-oncogene; Transcription factor that recognizes and binds to the enhancer heptamer motif 5’-TGA[CG]TCA-3’. Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (331 aa)
ID3inhibitor of DNA binding 3, dominant negative helix-loop-helix protein; ID (inhibitor of DNA binding) HLH proteins lack a basic DNA-binding domain but are able to form heterodimers with other HLH proteins, thereby inhibiting DNA binding. Involved in myogenesis by inhibiting skeletal muscle and cardiac myocyte differentiation and promoting muscle precursor cells proliferation. Inhibits the binding of E2A-containing protein complexes to muscle creatine kinase E-box enhancer. May inhibit other transcription factors (119 aa)
ID1inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (155 aa)
ELAVL1ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R); Involved in 3’-UTR ARE-mediated MYC stabilization. Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, HUR binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA and AUUUUUA motifs. Binds preferentially to the 5’-UUUU[AG]UUU-3’ motif in vitro (326 aa)
CDK12cyclin-dependent kinase 12; Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogn inhibitors (1490 aa)
BRCA1breast cancer 1, early onset; E3 ubiquitin-protein ligase that specifically mediates the formation of ’Lys-6’-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage. It is unclear whether it also mediates the formation of other types of polyubiquitin chains. The E3 ubiquitin-protein ligase activity is required for its tumor suppressor function. The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Reg [...] (1884 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (21%)