Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CBX3 CBX3 TNKS TNKS TNKS2 TNKS2 CPEB3 CPEB3 CNOT1 CNOT1 TNKS1BP1 TNKS1BP1 DYNC1H1 DYNC1H1 CNOT4 CNOT4 UBC UBC CNOT2 CNOT2 C2orf29 C2orf29 CNOT8 CNOT8 PAIP1 PAIP1 RQCD1 RQCD1 CNOT7 CNOT7 EIF4B EIF4B PABPC1 PABPC1 CNOT10 CNOT10 EIF4E EIF4E HNRNPK HNRNPK EIF4A2 EIF4A2 EIF4A1 EIF4A1 EIF4A3 EIF4A3 EIF4G1 EIF4G1 PAN3 PAN3 PAN2 PAN2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CNOT2CCR4-NOT transcription complex, subunit 2; Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may s [...] (540 aa)
EIF4Beukaryotic translation initiation factor 4B; Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5’- terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F (611 aa)
CPEB3cytoplasmic polyadenylation element binding protein 3 (698 aa)
EIF4A3eukaryotic translation initiation factor 4A3; ATP-dependent RNA helicase. Component of a splicing- dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction [...] (411 aa)
RQCD1RCD1 required for cell differentiation1 homolog (S. pombe); Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Involved in down-regulation of MYB- and JUN-dependent transcription. May play a role in cell differentiation (By similarity). Can bind oligonucleotides, such a [...] (299 aa)
CNOT8CCR4-NOT transcription complex, subunit 8; Has 3’-5’ poly(A) exoribonuclease activity for synthetic poly(A) RNA substrate. Its function seems to be partially redundant with that of CNOT7. Catalytic component of the CCR4-NOT complex which is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. During miRNA-mediated repression the complex seems also to act as translational repressor during translational initiation. Additional complex functions may be [...] (292 aa)
C2orf29chromosome 2 open reading frame 29; Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Is required for the association of CNOT10 with the CCR4-NOT complex. Seems not to be required for complex deadenylase function (510 aa)
EIF4A1eukaryotic translation initiation factor 4A1; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon (406 aa)
PAIP1poly(A) binding protein interacting protein 1; Acts as a coactivator in the regulation of translation initiation of poly(A)-containing mRNAs. Its stimulatory activity on translation is mediated via its action on PABPC1. Competes with PAIP2 for binding to PABPC1. Its association with EIF4A and PABPC1 may potentiate contacts between mRNA termini. May also be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of insta [...] (479 aa)
TNKStankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase; Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking. Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation (PARsylation) of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex- poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation. Also mediates PARsylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequ [...] (1327 aa)
PABPC1poly(A) binding protein, cytoplasmic 1; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre- mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability [...] (636 aa)
CNOT1CCR4-NOT transcription complex, subunit 1 (2376 aa)
EIF4A2eukaryotic translation initiation factor 4A2; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon (407 aa)
CNOT10CCR4-NOT transcription complex, subunit 10 (744 aa)
CBX3chromobox homolog 3; Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at ’Lys-9’, leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins (183 aa)
EIF4G1eukaryotic translation initiation factor 4 gamma, 1; Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome (1606 aa)
UBCubiquitin C (685 aa)
DYNC1H1dynein, cytoplasmic 1, heavy chain 1; Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP (4646 aa)
TNKS1BP1tankyrase 1 binding protein 1, 182kDa (1729 aa)
CNOT7CCR4-NOT transcription complex, subunit 7; Has 3’-5’ poly(A) exoribonuclease activity for synthetic poly(A) RNA substrate. Its function seems to be partially redundant with that of CNOT8. Catalytic component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. During miRNA-mediated repression the complex seems also to act as translational repressor during translation [...] (285 aa)
TNKS2tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase 2; Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking. Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex- poly-ADP- ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation. Also mediates poly-ADP-ribosylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subseque [...] (1166 aa)
HNRNPKheterogeneous nuclear ribonucleoprotein K; One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single- stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription [...] (464 aa)
PAN3PAN3 poly(A) specific ribonuclease subunit homolog (S. cerevisiae) (887 aa)
PAN2PAN2 poly(A) specific ribonuclease subunit homolog (S. cerevisiae); Functions in cytoplasmic mRNA decay. As part of the Pan nuclease complex, shortens poly(A) tails of RNA when the poly(A) stretch is bound by polyadenylate-binding protein (1202 aa)
EIF4Eeukaryotic translation initiation factor 4E; Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap (248 aa)
CNOT4CCR4-NOT transcription complex, subunit 4 (713 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (49%)