Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
KCNC2 KCNC2 KCNC1 KCNC1 SPTBN5 SPTBN5 SPTBN2 SPTBN2 KCNA10 KCNA10 KCNG3 KCNG3 KCND3 KCND3 KCNA2 KCNA2 SPTB SPTB KCNA5 KCNA5 KCNA1 KCNA1 KCNQ2 KCNQ2 KCNA4 KCNA4 KCNV1 KCNV1 NFASC NFASC KCNA7 KCNA7 KCNG1 KCNG1 NRCAM NRCAM KCND2 KCND2 KCNF1 KCNF1 KCNAB2 KCNAB2 KCNC4 KCNC4 KCNAB1 KCNAB1 KCNS2 KCNS2 KCNQ5 KCNQ5 KCNB2 KCNB2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
KCNA7potassium voltage-gated channel, shaker-related subfamily, member 7; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (By similarity) (456 aa)
KCNA5potassium voltage-gated channel, shaker-related subfamily, member 5; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. This channel displays rapid activation and slow inactivation. May play a role in regulating the secretion of insulin in normal pancreatic islets. Isoform 2 exhibits a voltage-dependent recovery from inacti [...] (613 aa)
KCNC1potassium voltage-gated channel, Shaw-related subfamily, member 1; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (585 aa)
KCNS2potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2; Potassium channel subunit. Modulates channel activity and reduces the ion flow (By similarity) (477 aa)
KCNF1potassium voltage-gated channel, subfamily F, member 1; Putative voltage-gated potassium channel (494 aa)
KCNV1potassium channel, subfamily V, member 1; Potassium channel subunit that does not form functional channels by itself. Modulates KCNB1 and KCNB2 channel activity by shifting the threshold for inactivation to more negative values and by slowing the rate of inactivation. Can down-regulate the channel activity of KCNB1, KCNB2, KCNC4 and KCND1, possibly by trapping them in intracellular membranes (500 aa)
KCNG3potassium voltage-gated channel, subfamily G, member 3; Potassium channel subunit. Modulates channel activity (436 aa)
SPTBN2spectrin, beta, non-erythrocytic 2; Probably plays an important role in neuronal membrane skeleton (2390 aa)
KCNA2potassium voltage-gated channel, shaker-related subfamily, member 2; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (499 aa)
SPTBN5spectrin, beta, non-erythrocytic 5 (3674 aa)
KCND3potassium voltage-gated channel, Shal-related subfamily, member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits (655 aa)
KCNA4potassium voltage-gated channel, shaker-related subfamily, member 4; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (653 aa)
KCND2potassium voltage-gated channel, Shal-related subfamily, member 2; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits (630 aa)
NFASCneurofascin (1240 aa)
KCNQ5potassium voltage-gated channel, KQT-like subfamily, member 5 (951 aa)
KCNQ2potassium voltage-gated channel, KQT-like subfamily, member 2 (872 aa)
KCNA10potassium voltage-gated channel, shaker-related subfamily, member 10; Mediates voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. The channel activity is up-regulated by cAMP (511 aa)
KCNC4potassium voltage-gated channel, Shaw-related subfamily, member 4; This protein mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (635 aa)
KCNG1potassium voltage-gated channel, subfamily G, member 1; Probable potassium channel subunit. May need to associate with another protein to form a functional channel. May modulate channel activity (513 aa)
KCNAB2potassium voltage-gated channel, shaker-related subfamily, beta member 2 (415 aa)
NRCAMneuronal cell adhesion molecule; Cell adhesion, ankyrin-binding protein involved in neuron-neuron adhesion. May play a role in the molecular assembly of the nodes of Ranvier (By similarity) (1304 aa)
KCNA1potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia); Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (495 aa)
SPTBspectrin, beta, erythrocytic; Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane (2328 aa)
KCNAB1potassium voltage-gated channel, shaker-related subfamily, beta member 1 (419 aa)
KCNB2potassium voltage-gated channel, Shab-related subfamily, member 2; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient (911 aa)
KCNC2potassium voltage-gated channel, Shaw-related subfamily, member 2; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Channel properties are modulated by subunit assembly (By similarity) (638 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (25%)