Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
GPKOW GPKOW DDX39B DDX39B ZMAT5 ZMAT5 CPSF1 CPSF1 POLR2I POLR2I SNRPB2 SNRPB2 LSM2 LSM2 DHX38 DHX38 SNRPG SNRPG PRPF38A PRPF38A SNRNP40 SNRNP40 CPSF2 CPSF2 RAE1 RAE1 HNRNPUL1 HNRNPUL1 PRPF8 PRPF8 NUP210 NUP210 SRSF2 SRSF2 SRSF1 SRSF1 NUP153 NUP153 YBX1 YBX1 SRSF9 SRSF9 TFIP11 TFIP11 NUP160 NUP160 TMEM48 TMEM48 PPWD1 PPWD1 SRSF12 SRSF12
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
GPKOWG patch domain and KOW motifs (476 aa)
POLR2Ipolymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template (By similarity) (125 aa)
SRSF9serine/arginine-rich splicing factor 9; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (221 aa)
SNRPB2small nuclear ribonucleoprotein polypeptide B; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein (225 aa)
NUP210nucleoporin 210kDa; Nucleoporin essential for nuclear pore assembly and fusion, nuclear pore spacing, as well as structural integrity (1887 aa)
PRPF38APRP38 pre-mRNA processing factor 38 (yeast) domain containing A; May be required for pre-mRNA splicing (Potential) (312 aa)
SRSF1serine/arginine-rich splicing factor 1; Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5’-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5’-RGAAGAAC-3’ (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5’- CGAGGCG-3’ motif in vitro. Three copies of the octame [...] (248 aa)
PPWD1peptidylprolyl isomerase domain and WD repeat containing 1; Putative peptidylprolyl isomerase (PPIase). PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. May be involved in pre-mRNA splicing (646 aa)
NUP153nucleoporin 153kDa; Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat- cont [...] (1475 aa)
SNRNP40small nuclear ribonucleoprotein 40kDa (U5); Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs (357 aa)
DHX38DEAH (Asp-Glu-Ala-His) box polypeptide 38; Probable ATP-binding RNA helicase involved in pre-mRNA splicing (1227 aa)
SNRPGsmall nuclear ribonucleoprotein polypeptide G; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5 (76 aa)
CPSF2cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
PRPF8PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae); Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5’ and the 3’ splice site (2335 aa)
CPSF1cleavage and polyadenylation specific factor 1, 160kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (1443 aa)
ZMAT5zinc finger, matrin-type 5 (170 aa)
SRSF2serine/arginine-rich splicing factor 2; Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5’- and 3’-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre- mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5’-AGSAGAGTA-3’ (S=C or G) or [...] (221 aa)
RAE1RAE1 RNA export 1 homolog (S. pombe); Binds mRNA. May function in nucleocytoplasmic transport and in directly or indirectly attaching cytoplasmic mRNPs to the cytoskeleton (368 aa)
TMEM48transmembrane protein 48; Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane (674 aa)
YBX1Y box binding protein 1; Mediates pre-mRNA alternative splicing regulation. Binds to splice sites in pre-mRNA and regulates splice site selection. Binds and stabilizes cytoplasmic mRNA. Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Regulates the transcription of numerous genes. Its transcriptional activity on the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at ’Lys-6’ and ’Lys-7’. Binds to promoters that contain a Y-box (5’-CTGATTGGCCAA-3’), such as MD [...] (324 aa)
LSM2LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae) (95 aa)
NUP160nucleoporin 160kDa; Involved in poly(A)+ RNA transport (1436 aa)
HNRNPUL1heterogeneous nuclear ribonucleoprotein U-like 1 (856 aa)
DDX39BDEAD (Asp-Glu-Ala-Asp) box polypeptide 39B (428 aa)
TFIP11tuftelin interacting protein 11; May play a role in the differentiation of ameloblasts and odontoblasts or in the forming of the enamel extracellular matrix. May also be involved in pre-mRNA splicing (By similarity) (837 aa)
SRSF12serine/arginine-rich splicing factor 12; Splicing factor that seems to antagonize SR proteins in pre-mRNA splicing regulation (261 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (48%)