Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
HSD3B1 HSD3B1 INPP5D INPP5D UXS1 UXS1 SCD5 SCD5 HSD3B2 HSD3B2 SCD SCD NSDHL NSDHL PAQR8 PAQR8 GPR149 GPR149 ABCF2 ABCF2 TSTA3 TSTA3 HSD3B7 HSD3B7 EMC6 EMC6 SDR42E2 SDR42E2 SDR42E1 SDR42E1 ABCF3 ABCF3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ABCF2ATP-binding cassette, sub-family F (GCN20), member 2 (634 aa)
EMC6ER membrane protein complex subunit 6 (110 aa)
HSD3B7hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7; The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. HSD VII is active against four 7-alpha-hydroxylated sterols. Does not metabolize several different C(19/21) steroids as substrates. Involved in bile acid synthesis (369 aa)
SCD5stearoyl-CoA desaturase 5; Fatty acid delta-9-desaturase that introduces a double bond in fatty acyl-coenzyme A at the delta-9 position (330 aa)
SDR42E2short chain dehydrogenase/reductase family 42E, member 2 (155 aa)
SDR42E1short chain dehydrogenase/reductase family 42E, member 1 (393 aa)
INPP5Dinositol polyphosphate-5-phosphatase, 145kDa; Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol- 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways. Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell pr [...] (1177 aa)
PAQR8progestin and adipoQ receptor family member VIII; Steroid membrane receptor. Binds progesterone. May be involved in oocyte maturation (By similarity) (354 aa)
HSD3B1hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. Efficiently catalyzes the transformation of pregnenolone to progesterone, 17-alpha-hydroxypregnenolone to 17- alpha-hydroxyprogesterone, DHEA to 4-androstenedione, dihydrotestosterone to 5-alpha-androstane-3 beta,17 beta-diol, dehydroepiandr [...] (373 aa)
HSD3B2hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids (372 aa)
NSDHLNAD(P) dependent steroid dehydrogenase-like (373 aa)
SCDstearoyl-CoA desaturase (delta-9-desaturase) (359 aa)
GPR149G protein-coupled receptor 149; Orphan receptor (731 aa)
UXS1UDP-glucuronate decarboxylase 1; Catalyzes the NAD-dependent decarboxylation of UDP- glucuronic acid to UDP-xylose. Necessary for the biosynthesis of the core tetrasaccharide in glycosaminoglycan biosynthesis (420 aa)
TSTA3tissue specific transplantation antigen P35B; Catalyzes the two-step NADP-dependent conversion of GDP- 4-dehydro-6-deoxy-D-mannose to GDP-fucose, involving an epimerase and a reductase reaction (321 aa)
ABCF3ATP-binding cassette, sub-family F (GCN20), member 3; Displays an antiviral effect against flaviviruses such as west Nile virus (WNV) in the presence of OAS1B (By similarity) (709 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (53%)