Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
MOGAT3 MOGAT3 PLD3 PLD3 AGPAT2 AGPAT2 CHPT1 CHPT1 LIPG LIPG PNPLA2 PNPLA2 PLD1 PLD1 PNPLA3 PNPLA3 EPT1 EPT1 PLD2 PLD2 LIPC LIPC LIPF LIPF CEPT1 CEPT1 PPAP2B PPAP2B LPL LPL SGPP1 SGPP1 ACER1 ACER1 SMPD4 SMPD4 UGT8 UGT8 GBA2 GBA2 SMPD3 SMPD3 SMPD2 SMPD2 DEGS1 DEGS1 SGMS2 SGMS2 ASAH1 ASAH1 ASAH2 ASAH2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PNPLA3patatin-like phospholipase domain containing 3; Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities (481 aa)
SMPD3sphingomyelin phosphodiesterase 3, neutral membrane (neutral sphingomyelinase II); Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (655 aa)
MOGAT3monoacylglycerol O-acyltransferase 3; Catalyzes the formation of diacylglycerol from 2- monoacylglycerol and fatty acyl-CoA. Also able to catalyze the terminal step in triacylglycerol synthesis by using diacylglycerol and fatty acyl-CoA as substrates. Has a preference toward palmitoyl-CoA and oleoyl-CoA. May be involved in absorption of dietary fat in the small intestine by catalyzing the resynthesis of triacylglycerol in enterocytes (341 aa)
CHPT1choline phosphotransferase 1 (406 aa)
SGPP1sphingosine-1-phosphate phosphatase 1; Has enzymatic activity against both sphingosine 1- phosphate (S1P) and dihydro-S1P. Regulates intracellular and extracellular S1P levels (441 aa)
SMPD2sphingomyelin phosphodiesterase 2, neutral membrane (neutral sphingomyelinase); Converts sphingomyelin to ceramide. Hydrolyze 1-acyl-2- lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso- sn-glycero-3-phosphocholine (lyso-platelet-activating factor). The physiological substrate seems to be Lyso-PAF (423 aa)
EPT1ethanolaminephosphotransferase 1 (CDP-ethanolamine-specific); Catalyzes phosphatidylethanolamine biosynthesis from CDP-ethanolamine. It thereby plays a central role in the formation and maintenance of vesicular membranes. Involved in the formation of phosphatidylethanolamine via ’Kennedy’ pathway (397 aa)
LIPGlipase, endothelial; Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin (500 aa)
PLD2phospholipase D2; May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity) (933 aa)
LIPClipase, hepatic; Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin (499 aa)
ACER1alkaline ceramidase 1; Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 8.0. Has a highly restricted substrate specificity for the natural stereoisomer of ceramide with D-erythro-sphingosine but not D-ribo- phytosphingosine or D-erythro-dihydrosphingosine as a backbone. May have a role in regulating the levels of bioactive lipids ceramide and sphingosine 1-phosphate, as well as complex sphingolipids (By similarity) (264 aa)
LPLlipoprotein lipase; The primary function of this lipase is the hydrolysis of triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium (By similarity) (475 aa)
UGT8UDP glycosyltransferase 8; Catalyzes the transfer of galactose to ceramide, a key enzymatic step in the biosynthesis of galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the central nervous system and peripheral nervous system (541 aa)
DEGS1delta(4)-desaturase, sphingolipid 1; Has sphingolipid-delta-4-desaturase activity. Converts D-erythro-sphinganine to D-erythro-sphingosine (E-sphing-4-enine) (323 aa)
PNPLA2patatin-like phospholipase domain containing 2; Catalyzes the initial step in triglyceride hydrolysis in adipocyte and non-adipocyte lipid droplets. Also has acylglycerol transacylase activity. May act coordinately with LIPE/HLS within the lipolytic cascade. Regulates adiposome size and may be involved in the degradation of adiposomes. May play an important role in energy homeostasis. May play a role in the response of the organism to starvation, enhancing hydrolysis of triglycerides and providing free fatty acids to other tissues to be oxidized in situations of energy depletion (504 aa)
PLD1phospholipase D1, phosphatidylcholine-specific; Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity) (1074 aa)
PLD3phospholipase D family, member 3 (490 aa)
CEPT1choline/ethanolamine phosphotransferase 1; Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP- ethanolamine, respectively. Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity (416 aa)
SGMS2sphingomyelin synthase 2; Sphingomyelin synthases synthesize the sphingolipid, sphingomyelin, through transfer of the phosphatidyl head group, phosphatidylcholine, on to the primary hydroxyl of ceramide. The reaction is bidirectional depending on the respective levels of the sphingolipid and ceramide. Plasma membrane SMS2 can also convert phosphatidylethanolamine (PE) to ceramide phosphatidylethanolamine (CPE). Major form in liver. Required for cell growth in certain cell types. Regulator of cell surface levels of ceramide, an important mediator of signal transduction and apoptosis. Re [...] (365 aa)
PPAP2Bphosphatidic acid phosphatase type 2B; Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1- phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions (311 aa)
AGPAT21-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta); Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (278 aa)
GBA2glucosidase, beta (bile acid) 2; Non-lysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide (GlcCer) to free glucose and ceramide. Involved in sphingomyelin generation and prevention of glycolipid accumulation. May also catalyze the hydrolysis of bile acid 3-O-glucosides, however, the relevance of such activity is unclear in vivo (927 aa)
ASAH1N-acylsphingosine amidohydrolase (acid ceramidase) 1; Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid (411 aa)
LIPFlipase, gastric (408 aa)
ASAH2N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2; Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 6.5-8.5. Acts as a key regulator of sphingolipid signaling metabolites by generating sphingosine at the cell surface. Acts as a repressor of apoptosis both by reducing C16-ceramide, thereby preventing ceramide-induced apoptosis, and generating sphingosine, a precursor of the antiapoptotic factor sphingosine 1-phosphate. Probably involved in the digestion of dietary sphingolipids in intestine by acting as a key enzyme for the catabo [...] (780 aa)
SMPD4sphingomyelin phosphodiesterase 4, neutral membrane (neutral sphingomyelinase-3) (866 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (43%)