Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
EPT1 EPT1 MBOAT2 MBOAT2 AGPAT3 AGPAT3 CHPT1 CHPT1 AGPAT4 AGPAT4 PLD2 PLD2 MOGAT3 MOGAT3 CDS1 CDS1 CEPT1 CEPT1 LCLAT1 LCLAT1 DGAT2 DGAT2 LIPG LIPG PPAP2B PPAP2B PNPLA3 PNPLA3 LIPC LIPC ASAH1 ASAH1 LPL LPL DEGS2 DEGS2 SGPP2 SGPP2 GALC GALC SMPD3 SMPD3 UGT8 UGT8 SMPD2 SMPD2 ACER2 ACER2 SGPP1 SGPP1 ACER1 ACER1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PNPLA3patatin-like phospholipase domain containing 3; Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities (481 aa)
SMPD3sphingomyelin phosphodiesterase 3, neutral membrane (neutral sphingomyelinase II); Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (655 aa)
MOGAT3monoacylglycerol O-acyltransferase 3; Catalyzes the formation of diacylglycerol from 2- monoacylglycerol and fatty acyl-CoA. Also able to catalyze the terminal step in triacylglycerol synthesis by using diacylglycerol and fatty acyl-CoA as substrates. Has a preference toward palmitoyl-CoA and oleoyl-CoA. May be involved in absorption of dietary fat in the small intestine by catalyzing the resynthesis of triacylglycerol in enterocytes (341 aa)
DGAT2diacylglycerol O-acyltransferase 2; Essential acyltransferase that catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. Required for synthesis and storage of intracellular triglycerides. Probably plays a central role in cytosolic lipid accumulation. In liver, is primarily responsible for incorporating endogenously synthesized fatty acids into triglycerides (By similarity). Functions also as an acyl-CoA retinol acyltransferase (ARAT) (388 aa)
CHPT1choline phosphotransferase 1 (406 aa)
SGPP1sphingosine-1-phosphate phosphatase 1; Has enzymatic activity against both sphingosine 1- phosphate (S1P) and dihydro-S1P. Regulates intracellular and extracellular S1P levels (441 aa)
SMPD2sphingomyelin phosphodiesterase 2, neutral membrane (neutral sphingomyelinase); Converts sphingomyelin to ceramide. Hydrolyze 1-acyl-2- lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso- sn-glycero-3-phosphocholine (lyso-platelet-activating factor). The physiological substrate seems to be Lyso-PAF (423 aa)
EPT1ethanolaminephosphotransferase 1 (CDP-ethanolamine-specific); Catalyzes phosphatidylethanolamine biosynthesis from CDP-ethanolamine. It thereby plays a central role in the formation and maintenance of vesicular membranes. Involved in the formation of phosphatidylethanolamine via ’Kennedy’ pathway (397 aa)
LIPGlipase, endothelial; Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin (500 aa)
GALCgalactosylceramidase; Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon (685 aa)
PLD2phospholipase D2; May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity) (933 aa)
AGPAT31-acylglycerol-3-phosphate O-acyltransferase 3; Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Acts on LPA containing saturated or unsaturated fatty acids C16-0-C20-4 at the sn-1 position using C18-1, C20-4 or C18-2-CoA as the acyl donor. Also acts on lysophosphatidylcholine, lysophosphatidylinositol and lysophosphatidylserine using C18-1 or C20-4-CoA (376 aa)
CDS1CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 1; Provides CDP-diacylglycerol an important precursor for the synthesis of phosphatidylinositol (PtdIns), phosphatidylglycerol, and cardiolipin. Overexpression may amplify cellular signaling responses from cytokines. May also play an important role in the signal transduction mechanism of retina and neural cells (461 aa)
LIPClipase, hepatic; Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin (499 aa)
ACER1alkaline ceramidase 1; Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 8.0. Has a highly restricted substrate specificity for the natural stereoisomer of ceramide with D-erythro-sphingosine but not D-ribo- phytosphingosine or D-erythro-dihydrosphingosine as a backbone. May have a role in regulating the levels of bioactive lipids ceramide and sphingosine 1-phosphate, as well as complex sphingolipids (By similarity) (264 aa)
MBOAT2membrane bound O-acyltransferase domain containing 2; Acyltransferase which mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn-glycero-3- phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2- diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes also the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA) (LPAAT activity). Has also a very weak lysophosphatidylcholine acyltransferase (LPCAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phosph [...] (520 aa)
DEGS2delta(4)-desaturase, sphingolipid 2; Bifunctional enzyme which acts as both a sphingolipid delta(4)-desaturase and a sphingolipid C4-hydroxylase (By similarity) (323 aa)
LPLlipoprotein lipase; The primary function of this lipase is the hydrolysis of triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium (By similarity) (475 aa)
LCLAT1lysocardiolipin acyltransferase 1; Acyl-CoA-lysocardiolipin acyltransferase. Possesses both lysophosphatidylinositol acyltransferase (LPIAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities. Recognizes both monolysocardiolipin and dilysocardiolipin as substrates with a preference for linoleoyl-CoA and oleoyl-CoA as acyl donors. Acts as a remodeling enzyme for cardiolipin, a major membrane polyglycerophospholipid. Converts lysophosphatidic acid (LPA) into phosphatidic acid (PA) with a relatively low activity. Required for establishment of the hematopoietic and endothelial [...] (414 aa)
UGT8UDP glycosyltransferase 8; Catalyzes the transfer of galactose to ceramide, a key enzymatic step in the biosynthesis of galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the central nervous system and peripheral nervous system (541 aa)
AGPAT41-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase, delta); Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (By similarity) (378 aa)
SGPP2sphingosine-1-phosphate phosphatase 2; Has specific phosphohydrolase activity towards sphingoid base 1-phosphates. Has high phosphohydrolase activity against dihydrosphingosine-1-phosphate and sphingosine-1-phosphate (S1P) in vitro. May play a role in attenuating intracellular sphingosine 1-phosphate (S1P) signaling. May play a role in pro-inflammatory signaling (399 aa)
ACER2alkaline ceramidase 2; Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid. Unsaturated long-chain ceramides are the best substrates, saturated long-chain ceramides and unsaturated very long-chain ceramides are good substrates, whereas saturated very long-chain ceramides and short-chain ceramides were poor substrates. The substrate preference is D-erythro-C(18-1)-, C(20-1)-, C(20-4)-ceramide > D-erythro-C(16-0)-, C(18-0), C(20-0)- ceramide > D-erythro-C(24-1)-ceramide > D-erythro-C(12-0)- ceramide, D-erythro-C(14-0)-ceramides > D-erythro-C(24-0)-ceramide > D-eryth [...] (275 aa)
CEPT1choline/ethanolamine phosphotransferase 1; Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP- ethanolamine, respectively. Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity (416 aa)
PPAP2Bphosphatidic acid phosphatase type 2B; Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1- phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions (311 aa)
ASAH1N-acylsphingosine amidohydrolase (acid ceramidase) 1; Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid (411 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (42%)