Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
MOCS3 MOCS3 PANK3 PANK3 PANK1 PANK1 NOL6 NOL6 CSNK2A2 CSNK2A2 COASY COASY PPCS PPCS PPCDC PPCDC SIRT1 SIRT1 CSNK2A1 CSNK2A1 CDO1 CDO1 GOT1 GOT1 PANK2 PANK2 CTH CTH PANK4 PANK4 GOT2 GOT2 UBC UBC PPP4C PPP4C PPP2CB PPP2CB PPP3CB PPP3CB PPP2CA PPP2CA PPEF1 PPEF1 PPP3CC PPP3CC PPP5D1 PPP5D1 PPP5C PPP5C CENPI CENPI
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PPP5Cprotein phosphatase 5, catalytic subunit; May play a role in the regulation of RNA biogenesis and/or mitosis. In vitro, dephosphorylates serine residues of skeletal muscle phosphorylase and histone H1 (499 aa)
SIRT1sirtuin 1; NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Se [...] (747 aa)
CSNK2A1casein kinase 2, alpha 1 polypeptide; Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly che [...] (391 aa)
PPP2CBprotein phosphatase 2, catalytic subunit, beta isozyme; PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase (309 aa)
PANK3pantothenate kinase 3; Plays a role in the physiological regulation of the intracellular CoA concentration (By similarity) (370 aa)
PPP3CCprotein phosphatase 3, catalytic subunit, gamma isozyme; Calcium-dependent, calmodulin-stimulated protein phosphatase. This subunit may have a role in the calmodulin activation of calcineurin (512 aa)
MOCS3molybdenum cofactor synthesis 3; Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln). Also essential during biosynthesis of the molybdenum cofactor. Acts by mediating the C-terminal thiocarboxylation of sulfur carriers URM1 and MOCS2A. Its N-terminus first activates URM1 and MOCS2A as acyl-adenylates (-COAMP), then the persulfide sulfur on the catalytic cysteine is transferred to URM1 and MOCS2A to form thiocarboxylation (-COSH) of their C-terminus. The reaction probably involves hydrogen sulfide that is generated from the [...] (460 aa)
GOT2glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2); Catalyzes the irreversible transamination of the L- tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long-chain free fatty acids (430 aa)
CDO1cysteine dioxygenase, type I; Initiates several important metabolic pathways related to pyruvate and several sulfurate compounds including sulfate, hypotaurine and taurine. Critical regulator of cellular cysteine concentrations. Has an important role in maintaining the hepatic concentation of intracellular free cysteine within a proper narrow range (200 aa)
CSNK2A2casein kinase 2, alpha prime polypeptide; Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly [...] (350 aa)
PPP4Cprotein phosphatase 4, catalytic subunit; Protein phosphatase that is involved in many processes such as microtubule organization at centrosomes, maturation of spliceosomal snRNPs, apoptosis, DNA repair, tumor necrosis factor (TNF)-alpha signaling, activation of c-Jun N-terminal kinase MAPK8, regulation of histone acetylation, DNA damage checkpoint signaling, NF-kappa-B activation and cell migration. The PPP4C- PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AFX phosphorylated on Ser-1 [...] (307 aa)
NOL6nucleolar protein family 6 (RNA-associated) (1146 aa)
PANK1pantothenate kinase 1; Plays a role in the physiological regulation of the intracellular CoA concentration (By similarity) (598 aa)
PANK2pantothenate kinase 2 (570 aa)
PPCDCphosphopantothenoylcysteine decarboxylase; Necessary for the biosynthesis of coenzyme A. Catalyzes the decarboxylation of 4-phosphopantothenoylcysteine to form 4’- phosphopantotheine (204 aa)
UBCubiquitin C (685 aa)
PPEF1protein phosphatase, EF-hand calcium binding domain 1; May have a role in the recovery or adaptation response of photoreceptors. May have a role in development (653 aa)
GOT1glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1); Biosynthesis of L-glutamate from L-aspartate or L- cysteine. Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is conve [...] (413 aa)
CTHcystathionase (cystathionine gamma-lyase); Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration [...] (405 aa)
PPCSphosphopantothenoylcysteine synthetase; Catalyzes the first step in the biosynthesis of coenzyme A from vitamin B5, where cysteine is conjugated to 4’- phosphopantothenate to form 4-phosphopantothenoylcysteine (311 aa)
CENPIcentromere protein I; Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. Required for the localization of CENPF, MAD1L1 and MAD2 (MAD2L1 or MAD2L2) to kinetochores. Involved in the response of gonadal tissues to follicle-stimulating hormone (756 aa)
PANK4pantothenate kinase 4; Plays a role in the physiological regulation of the intracellular CoA concentration (By similarity) (773 aa)
PPP3CBprotein phosphatase 3, catalytic subunit, beta isozyme; Calcium-dependent, calmodulin-stimulated protein phosphatase. This subunit may have a role in the calmodulin activation of calcineurin (525 aa)
PPP5D1PPP5 tetratricopeptide repeat domain containing 1 (171 aa)
PPP2CAprotein phosphatase 2, catalytic subunit, alpha isozyme; PP2A is the major phosphatase for microtubule-associated proteins (MAPs). PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase. Cooperates with SGOL2 to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I (By similarity). Can dephosphorylate SV40 large T antigen and p53/TP53. Activates RAF1 by dephosphorylating it at ’Ser-259’ (309 aa)
COASYCoA synthase; Bifunctional enzyme that catalyzes the fourth and fifth sequential steps of CoA biosynthetic pathway. The fourth reaction is catalyzed by the phosphopantetheine adenylyltransferase, coded by the coaD domain; the fifth reaction is catalyzed by the dephospho-CoA kinase, coded by the coaE domain. May act as a point of CoA biosynthesis regulation (593 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (53%)