Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SNRPD2 SNRPD2 SNRPG SNRPG PHAX PHAX SRSF6 SRSF6 SNRPD1 SNRPD1 RNPS1 RNPS1 NCBP2 NCBP2 GEMIN4 GEMIN4 CPSF2 CPSF2 NUP88 NUP88 NUP188 NUP188 SNRPB SNRPB DDX20 DDX20 SRSF7 SRSF7 NUP62 NUP62 NUP155 NUP155 NUP43 NUP43 SRRM1 SRRM1 NUP50 NUP50 NUP214 NUP214 NFX1 NFX1 NUP153 NUP153 KPNB1 KPNB1 UBC UBC NEK6 NEK6 GCK GCK
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
GCKglucokinase (hexokinase 4); Catalyzes the initial step in utilization of glucose by the beta-cell and liver at physiological glucose concentration. Glucokinase has a high Km for glucose, and so it is effective only when glucose is abundant. The role of GCK is to provide G6P for the synthesis of glycogen. Pancreatic glucokinase plays an important role in modulating insulin secretion. Hepatic glucokinase helps to facilitate the uptake and conversion of glucose by acting as an insulin-sensitive determinant of hepatic glucose usage (466 aa)
NUP155nucleoporin 155kDa; Essential component of nuclear pore complex. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport (By similarity) (1391 aa)
SRSF6serine/arginine-rich splicing factor 6; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (344 aa)
NUP153nucleoporin 153kDa; Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat- cont [...] (1475 aa)
SNRPGsmall nuclear ribonucleoprotein polypeptide G; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5 (76 aa)
KPNB1karyopherin (importin) beta 1; Functions in nuclear protein import, either in association with an adapter protein, like an importin-alpha subunit, which binds to nuclear localization signals (NLS) in cargo substrates, or by acting as autonomous nuclear transport receptor. Acting autonomously, serves itself as NLS receptor. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleopl [...] (876 aa)
PHAXphosphorylated adaptor for RNA export; A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus. Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import [...] (394 aa)
CPSF2cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
SNRPD1small nuclear ribonucleoprotein D1 polypeptide 16kDa; May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through nonspecific electrostatic contacts with RNA (119 aa)
RNPS1RNA binding protein S1, serine-rich domain (305 aa)
NUP62nucleoporin 62kDa; Essential component of the nuclear pore complex. The N- terminal is probably involved in nucleocytoplasmic transport. The C-terminal is probably involved in protein-protein interaction via coiled-coil formation and may function in anchorage of p62 to the pore complex (522 aa)
GEMIN4gem (nuclear organelle) associated protein 4; The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing in the nucleus (1058 aa)
SRSF7serine/arginine-rich splicing factor 7; Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10 (238 aa)
SRRM1serine/arginine repetitive matrix 1; Part of pre- and post-splicing multiprotein mRNP complexes. Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3’-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequen [...] (904 aa)
NCBP2nuclear cap binding protein subunit 2, 20kDa; Component of the cap-binding complex (CBC), which binds co-transcriptionally to the 5’ cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing, translation regulation, nonsense-mediated mRNA decay, RNA-mediated gene silencing (RNAi) by microRNAs (miRNAs) and mRNA export. The CBC complex is involved in mRNA export from the nucleus via its interaction with ALYREF/THOC4/ALY, leading to the recruitment of the mRNA export machinery to the 5’ end of mRNA and to mRNA export in a 5’ to 3’ direction through the nuclear pore. [...] (156 aa)
NUP43nucleoporin 43kDa; Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation (380 aa)
SNRPD2small nuclear ribonucleoprotein D2 polypeptide 16.5kDa; Required for pre-mRNA splicing. Required for snRNP biogenesis (By similarity) (118 aa)
UBCubiquitin C (685 aa)
NUP50nucleoporin 50kDa; Component of the nuclear pore complex that has a direct role in nuclear protein import. Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin- alpha-beta-cargo complex and importin recycling. Interacts with multiple transport receptor proteins including CDKN1B. This interaction is required for correct intracellular transport and degradation of CDKN1B (468 aa)
NUP214nucleoporin 214kDa; May serve as a docking site in the receptor-mediated import of substrates across the nuclear pore complex (2090 aa)
DDX20DEAD (Asp-Glu-Ala-Asp) box polypeptide 20; The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing in the nucleus. It may also play a role in the metabolism of snoRNPs (824 aa)
NUP188nucleoporin 188kDa; May function as a component of the nuclear pore complex (NPC) (1749 aa)
NEK6NIMA-related kinase 6; Protein kinase which plays an important role in mitotic cell cycle progression. Required for chromosome segregation at metaphase-anaphase transition, robust mitotic spindle formation and cytokinesis. Phosphorylates ATF4, CIR1, PTN, RAD26L, RBBP6, RPS7, RPS6KB1, TRIP4, STAT3 and histones H1 and H3. Phosphorylates KIF11 to promote mitotic spindle formation. Involved in G2/M phase cell cycle arrest induced by DNA damage. Inhibition of activity results in apoptosis. May contribute to tumorigenesis by suppressing p53/TP53-induced cancer cell senescence (347 aa)
NFX1nuclear transcription factor, X-box binding 1; Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination (1120 aa)
SNRPBsmall nuclear ribonucleoprotein polypeptides B and B1; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5. May have a functional role in the pre-mRNA splicing or in snRNP structure. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (By similarity) (240 aa)
NUP88nucleoporin 88kDa; Essential component of nuclear pore complex (741 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (55%)