Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CYP2C8 CYP2C8 CYP2B6 CYP2B6 SULT1E1 SULT1E1 CYP2S1 CYP2S1 CYP1A1 CYP1A1 CYP1B1 CYP1B1 CYP3A4 CYP3A4 AKR1C1 AKR1C1 ALDH1A1 ALDH1A1 CYP2A13 CYP2A13 ADH5 ADH5 HSD17B6 HSD17B6 ADH4 ADH4 HSD3B2 HSD3B2 AKR1C3 AKR1C3 UGT1A8 UGT1A8 AKR1C4 AKR1C4 HSD17B3 HSD17B3 AKR1D1 AKR1D1 UXS1 UXS1 BLVRA BLVRA DIO1 DIO1 GUSB GUSB DIO2 DIO2 KL KL MIOX MIOX
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
MIOXmyo-inositol oxygenase (285 aa)
SULT1E1sulfotransferase family 1E, estrogen-preferring, member 1; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of estradiol and estrone. May play a role in the regulation of estrogen receptor activity by metabolizing free estradiol. Maximally sulfates beta-estradiol and estrone at concentrations of 20 nM. Also sulfates dehydroepiandrosterone, pregnenolone, ethinylestradiol, equalenin, diethylstilbesterol and 1-naphthol, at significantly higher concentrations; however, cortisol, testosterone and dopamine are not sulfated (294 aa)
AKR1D1aldo-keto reductase family 1, member D1 (delta 4-3-ketosteroid-5-beta-reductase); Efficiently catalyzes the reduction of progesterone, androstenedione, 17-alpha-hydroxyprogesterone and testosterone to 5-beta-reduced metabolites. The bile acid intermediates 7- alpha,12-alpha-dihydroxy-4-cholesten-3-one and 7-alpha-hydroxy-4- cholesten-3-one can also act as substrates (326 aa)
CYP1B1cytochrome P450, family 1, subfamily B, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (543 aa)
AKR1C4aldo-keto reductase family 1, member C4 (chlordecone reductase; 3-alpha hydroxysteroid dehydrogenase, type I; dihydrodiol dehydrogenase 4) (323 aa)
ADH4alcohol dehydrogenase 4 (class II), pi polypeptide (380 aa)
BLVRAbiliverdin reductase A; Reduces the gamma-methene bridge of the open tetrapyrrole, biliverdin IX alpha, to bilirubin with the concomitant oxidation of a NADH or NADPH cofactor (296 aa)
ADH5alcohol dehydrogenase 5 (class III), chi polypeptide; Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione (374 aa)
ALDH1A1aldehyde dehydrogenase 1 family, member A1; Binds free retinal and cellular retinol-binding protein- bound retinal. Can convert/oxidize retinaldehyde to retinoic acid (By similarity) (501 aa)
GUSBglucuronidase, beta; Plays an important role in the degradation of dermatan and keratan sulfates (651 aa)
CYP2S1cytochrome P450, family 2, subfamily S, polypeptide 1; Has a potential importance for extrahepatic xenobiotic metabolism (504 aa)
HSD17B6hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse); NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17-beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3- alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is firs [...] (317 aa)
CYP2B6cytochrome P450, family 2, subfamily B, polypeptide 6; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase (491 aa)
CYP2A13cytochrome P450, family 2, subfamily A, polypeptide 13; Exhibits a coumarin 7-hydroxylase activity. Active in the metabolic activation of hexamethylphosphoramide, N,N- dimethylaniline, 2’-methoxyacetophenone, N- nitrosomethylphenylamine, and the tobacco-specific carcinogen, 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone. Possesses phenacetin O-deethylation activity (494 aa)
CYP3A4cytochrome P450, family 3, subfamily A, polypeptide 4; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1’-hydroxylation and midazolam 4- hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2- exo-monooxygenase. The enzyme also hydroxylates etoposide (503 aa)
DIO1deiodinase, iodothyronine, type I; Responsible for the deiodination of T4 (3,5,3’,5’- tetraiodothyronine) (By similarity) (249 aa)
HSD3B2hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids (372 aa)
CYP2C8cytochrome P450, family 2, subfamily C, polypeptide 8; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti- cancer drug paclitaxel (taxol) (490 aa)
UGT1A8UDP glucuronosyltransferase 1 family, polypeptide A8; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
HSD17B3hydroxysteroid (17-beta) dehydrogenase 3; Favors the reduction of androstenedione to testosterone. Uses NADPH while the two other EDH17B enzymes use NADH (310 aa)
CYP1A1cytochrome P450, family 1, subfamily A, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
KLklotho; May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity) (1012 aa)
AKR1C3aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II) (323 aa)
AKR1C1aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase) (323 aa)
UXS1UDP-glucuronate decarboxylase 1; Catalyzes the NAD-dependent decarboxylation of UDP- glucuronic acid to UDP-xylose. Necessary for the biosynthesis of the core tetrasaccharide in glycosaminoglycan biosynthesis (420 aa)
DIO2deiodinase, iodothyronine, type II; Responsible for the deiodination of T4 (3,5,3’,5’- tetraiodothyronine) into T3 (3,5,3’-triiodothyronine). Essential for providing the brain with appropriate levels of T3 during the critical period of development (309 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (39%)