Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
NUPL2 NUPL2 NUP62 NUP62 HNRNPM HNRNPM POLR2H POLR2H HNRNPA0 HNRNPA0 NUP155 NUP155 NUP85 NUP85 MAGOH MAGOH RBMX RBMX NUDT21 NUDT21 NUP43 NUP43 NUP50 NUP50 GTF2F1 GTF2F1 SRSF5 SRSF5 NUP160 NUP160 CPSF7 CPSF7 SRSF4 SRSF4 SF3A2 SF3A2 NUP88 NUP88 TXNL4A TXNL4A CLP1 CLP1 HNRNPK HNRNPK POLR2F POLR2F DNAJC8 DNAJC8 SF3B5 SF3B5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SF3A2splicing factor 3a, subunit 2, 66kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (464 aa)
NUP155nucleoporin 155kDa; Essential component of nuclear pore complex. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport (By similarity) (1391 aa)
NUP85nucleoporin 85kDa; Essential component of the nuclear pore complex (NPC) that seems to be required for NPC assembly and maintenance. As part of the NPC Nup107-160 subcomplex plays a role in RNA export and in tethering NUP98/Nup98 and NUP153 to the nucleus. The Nup107-160 complex seems to be required for spindle assembly during mitosis. NUP85 is required for membrane clustering of CCL2- activated CCR2. Seems to be involved in CCR2-mediated chemotaxis of monocytes and may link activated CCR2 to the phosphatidyl- inositol 3-kinase-Rac-lammellipodium protrusion cascade (656 aa)
NUPL2nucleoporin like 2; Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. In case of infection by HIV-1, it may participate in the docking of viral Vpr at the nuclear envelope (423 aa)
DNAJC8DnaJ (Hsp40) homolog, subfamily C, member 8 (253 aa)
TXNL4Athioredoxin-like 4A; Essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes that are involved in spliceosome assembly (142 aa)
POLR2Hpolymerase (RNA) II (DNA directed) polypeptide H; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively (150 aa)
NUDT21nudix (nucleoside diphosphate linked moiety X)-type motif 21; Component of the cleavage factor Im (CFIm) complex that plays a key role in pre-mRNA 3’-processing. Involved in association with CPSF6 or CPSF7 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. NUDT21/CPSF5 binds to cleavage and polyadenylation RNA substrates. The homodimer mediates simultaneous sequence-specific recognition of two 5’-UGUA-3’ elements within the pre-mRNA. Binds to, but does not hydrolyze mono- and di-adenosine nucleotides. May have a role in mRNA export (227 aa)
NUP62nucleoporin 62kDa; Essential component of the nuclear pore complex. The N- terminal is probably involved in nucleocytoplasmic transport. The C-terminal is probably involved in protein-protein interaction via coiled-coil formation and may function in anchorage of p62 to the pore complex (522 aa)
HNRNPA0heterogeneous nuclear ribonucleoprotein A0; mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post- transcriptional regulation of cytokines mRNAs (305 aa)
HNRNPMheterogeneous nuclear ribonucleoprotein M; Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines (730 aa)
NUP43nucleoporin 43kDa; Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation (380 aa)
CPSF7cleavage and polyadenylation specific factor 7, 59kDa; Component of the cleavage factor Im complex (CFIm) that plays a key role in pre-mRNA 3’ processing. Binds to cleavage and polyadenylation RNA substrates (514 aa)
NUP50nucleoporin 50kDa; Component of the nuclear pore complex that has a direct role in nuclear protein import. Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin- alpha-beta-cargo complex and importin recycling. Interacts with multiple transport receptor proteins including CDKN1B. This interaction is required for correct intracellular transport and degradation of CDKN1B (468 aa)
SF3B5splicing factor 3b, subunit 5, 10kDa (86 aa)
RBMXRNA binding motif protein, X-linked; RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates [...] (391 aa)
MAGOHmago-nashi homolog, proliferation-associated (Drosophila); Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mR [...] (146 aa)
SRSF4serine/arginine-rich splicing factor 4; Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10 (494 aa)
HNRNPKheterogeneous nuclear ribonucleoprotein K; One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single- stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription [...] (464 aa)
NUP160nucleoporin 160kDa; Involved in poly(A)+ RNA transport (1436 aa)
SRSF5serine/arginine-rich splicing factor 5; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites (272 aa)
GTF2F1general transcription factor IIF, polypeptide 1, 74kDa; TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation (517 aa)
POLR2Fpolymerase (RNA) II (DNA directed) polypeptide F; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II, and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2F/RPB6 is part of the clamp ele [...] (127 aa)
CLP1cleavage and polyadenylation factor I subunit 1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Appears to have roles in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex. Phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicin [...] (425 aa)
NUP88nucleoporin 88kDa; Essential component of nuclear pore complex (741 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (46%)