Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PDXK PDXK PNPO PNPO PDXP PDXP HIBADH HIBADH CYP2C9 CYP2C9 ADH1A ADH1A ADH6 ADH6 ABAT ABAT CYP2A6 CYP2A6 AOX1 AOX1 UGT2B4 UGT2B4 UGT2B7 UGT2B7 UGT1A6 UGT1A6 EHHADH EHHADH CYP26B1 CYP26B1 RDH5 RDH5 ADH4 ADH4 BCMO1 BCMO1 CYP26C1 CYP26C1 SDR16C5 SDR16C5 CYP2C18 CYP2C18 ADH1B ADH1B RDH8 RDH8 ADH5 ADH5 RDH10 RDH10 RDH12 RDH12
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CYP26B1cytochrome P450, family 26, subfamily B, polypeptide 1 (512 aa)
RDH8retinol dehydrogenase 8 (all-trans); Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinal to all-trans-retinol. May play a role in the regeneration of visual pigment at high light intensity (By similarity) (311 aa)
ADH1Aalcohol dehydrogenase 1A (class I), alpha polypeptide (375 aa)
PDXPpyridoxal (pyridoxine, vitamin B6) phosphatase; Protein serine phosphatase that dephosphorylates ’Ser-3’ in cofilin and probably also dephosphorylates phospho-serine residues in DSTN. Regulates cofilin-dependent actin cytoskeleton reorganization. Required for normal progress through mitosis and normal cytokinesis. Does not dephosphorylate phospho-threonines in LIMK1. Does not dephosphorylate peptides containing phospho- tyrosine. Pyridoxal phosphate phosphatase. Has some activity towards pyridoxal 5’-phosphate (PLP), pyridoxine 5’-phosphate (PMP) and pyridoxine 5’-phosphate (PNP), with [...] (296 aa)
PNPOpyridoxamine 5’-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5’- phosphate (PNP) or pyridoxamine 5’-phosphate (PMP) into pyridoxal 5’-phosphate (PLP) (261 aa)
EHHADHenoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase (723 aa)
RDH10retinol dehydrogenase 10 (all-trans); Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinol to all-trans-retinal. Has no detectable activity towards 11-cis-retinol, 9-cis-retinol and 13-cis-retinol (341 aa)
RDH5retinol dehydrogenase 5 (11-cis/9-cis); Stereospecific 11-cis retinol dehydrogenase, which catalyzes the final step in the biosynthesis of 11-cis retinaldehyde, the universal chromophore of visual pigments. Also able to oxidize 9-cis-retinol and 13-cis-retinol, but not all- trans-retinol. Active in the presence of NAD as cofactor but not in the presence of NADP (318 aa)
BCMO1beta-carotene 15,15’-monooxygenase 1; Symmetrically cleaves beta-carotene into two molecules of retinal. The reaction proceeds in three stages, epoxidation of the 15,15’-double bond, hydration of the double bond leading to ring opening, and oxidative cleavage of the diol formed (547 aa)
CYP2C9cytochrome P450, family 2, subfamily C, polypeptide 9; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S- warfarin, diclofenac, phenytoin, tolbutamide and losartan (490 aa)
HIBADH3-hydroxyisobutyrate dehydrogenase (336 aa)
ADH4alcohol dehydrogenase 4 (class II), pi polypeptide (380 aa)
RDH12retinol dehydrogenase 12 (all-trans/9-cis/11-cis); Exhibits an oxidoreductive catalytic activity towards retinoids. Most efficient as an NADPH-dependent retinal reductase. Displays high activity toward 9-cis and all-trans-retinol. Also involved in the metabolism of short-chain aldehydes. No steroid dehydrogenase activity detected. Might be the key enzyme in the formation of 11-cis-retinal from 11-cis-retinol during regeneration of the cone visual pigments (316 aa)
ABAT4-aminobutyrate aminotransferase; Catalyzes the conversion of gamma-aminobutyrate and L- beta-aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine (500 aa)
CYP26C1cytochrome P450, family 26, subfamily C, polypeptide 1; Plays a role in retinoic acid metabolism. Acts on retinoids, including all-trans-retinoic acid (RA) and its stereoisomer 9-cis-RA (preferred substrate) (522 aa)
CYP2C18cytochrome P450, family 2, subfamily C, polypeptide 18; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (490 aa)
PDXKpyridoxal (pyridoxine, vitamin B6) kinase; Required for synthesis of pyridoxal-5-phosphate from vitamin B6 (312 aa)
ADH5alcohol dehydrogenase 5 (class III), chi polypeptide; Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione (374 aa)
CYP2A6cytochrome P450, family 2, subfamily A, polypeptide 6 (494 aa)
UGT1A6UDP glucuronosyltransferase 1 family, polypeptide A6; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols (532 aa)
UGT2B7UDP glucuronosyltransferase 2 family, polypeptide B7; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (529 aa)
UGT2B4UDP glucuronosyltransferase 2 family, polypeptide B4; UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4- nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid (528 aa)
ADH1Balcohol dehydrogenase 1B (class I), beta polypeptide (375 aa)
SDR16C5short chain dehydrogenase/reductase family 16C, member 5; Oxidoreductase with strong preference for NAD. Active in both the oxidative and reductive directions. Oxidizes all-trans- retinol in all-trans-retinaldehyde. No activity was detected with 11-cis-retinol or 11-cis-retinaldehyde as substrates with either NAD(+)/NADH or NADP(+)/NADPH (309 aa)
AOX1aldehyde oxidase 1 (1338 aa)
ADH6alcohol dehydrogenase 6 (class V) (375 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (41%)