Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
HADH HADH UGT2B17 UGT2B17 UGT2B11 UGT2B11 ALDH6A1 ALDH6A1 UGT1A9 UGT1A9 HSD17B6 HSD17B6 UGT1A4 UGT1A4 CYP2B6 CYP2B6 ADH7 ADH7 CYP2S1 CYP2S1 MAOB MAOB UGT1A10 UGT1A10 CYP2C8 CYP2C8 CYP4A11 CYP4A11 AOX1 AOX1 UGT1A3 UGT1A3 CYP3A7 CYP3A7 CYP1A2 CYP1A2 CYP1A1 CYP1A1 PHOSPHO2 PHOSPHO2 UGT1A8 UGT1A8 UGT2A1 UGT2A1 DHRS9 DHRS9 ASMT ASMT DHRS4L2 DHRS4L2 RDH16 RDH16
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CYP2S1cytochrome P450, family 2, subfamily S, polypeptide 1; Has a potential importance for extrahepatic xenobiotic metabolism (504 aa)
CYP4A11cytochrome P450, family 4, subfamily A, polypeptide 11; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) (519 aa)
DHRS9dehydrogenase/reductase (SDR family) member 9; 3-alpha-hydroxysteroid dehydrogenase that converts 3- alpha-tetrahydroprogesterone (allopregnanolone) to dihydroxyprogesterone and 3-alpha-androstanediol to dihydroxyprogesterone. May play a role in the biosynthesis of retinoic acid from retinaldehyde, but seems to have low activity with retinoids. Can utilize both NADH and NADPH (319 aa)
HSD17B6hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse); NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17-beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3- alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is firs [...] (317 aa)
UGT2B17UDP glucuronosyltransferase 2 family, polypeptide B17; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. The major substrates of this isozyme are eugenol > 4-methylumbelliferone > dihydrotestosterone (DHT) > androstane-3-alpha,17-beta-diol (3-alpha-diol) > testosterone > androsterone (ADT) (530 aa)
CYP2B6cytochrome P450, family 2, subfamily B, polypeptide 6; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase (491 aa)
DHRS4L2dehydrogenase/reductase (SDR family) member 4 like 2; Probable oxidoreductase (By similarity) (232 aa)
CYP3A7cytochrome P450, family 3, subfamily A, polypeptide 7; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (503 aa)
CYP1A2cytochrome P450, family 1, subfamily A, polypeptide 2; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic a [...] (516 aa)
UGT1A10UDP glucuronosyltransferase 1 family, polypeptide A10; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
UGT1A9UDP glucuronosyltransferase 1 family, polypeptide A9; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols (530 aa)
PHOSPHO2phosphatase, orphan 2; Phosphatase that has high activity toward pyridoxal 5’- phosphate (PLP). Also active at much lower level toward pyrophosphate, phosphoethanolamine (PEA), phosphocholine (PCho), phospho-l-tyrosine, fructose-6-phosphate, p-nitrophenyl phosphate, and h-glycerophosphate (241 aa)
CYP2C8cytochrome P450, family 2, subfamily C, polypeptide 8; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti- cancer drug paclitaxel (taxol) (490 aa)
UGT1A4UDP glucuronosyltransferase 1 family, polypeptide A4; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate (534 aa)
UGT1A8UDP glucuronosyltransferase 1 family, polypeptide A8; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
AOX1aldehyde oxidase 1 (1338 aa)
MAOBmonoamine oxidase B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (520 aa)
CYP1A1cytochrome P450, family 1, subfamily A, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
ASMTacetylserotonin O-methyltransferase; Isoform 1 catalyzes the transfer of a methyl group onto N-acetylserotonin, producing melatonin (N-acetyl-5- methoxytryptamine). Isoform 2 and isoform 3 lack enzyme activity (373 aa)
RDH16retinol dehydrogenase 16 (all-trans); Oxidoreductase with a preference for NAD. Oxidizes all- trans-retinol and 13-cis-retinol to the corresponding aldehydes. Has higher activity towards CRBP-bound retinol than with free retinol. Oxidizes 3-alpha-hydroxysteroids. Oxidizes androstanediol and androsterone to dihydrotestosterone and androstanedione. Can also catalyze the reverse reaction (317 aa)
HADHhydroxyacyl-CoA dehydrogenase; Plays an essential role in the mitochondrial beta- oxidation of short chain fatty acids. Exerts it highest activity toward 3-hydroxybutyryl-CoA (331 aa)
UGT2B11UDP glucuronosyltransferase 2 family, polypeptide B11; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (529 aa)
UGT2A1UDP glucuronosyltransferase 2 family, polypeptide A1, complex locus; UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Active on odorants and seems to be involved in olfaction; it could help clear lipophilic odorant molecules from the sensory epithelium (536 aa)
UGT1A3UDP glucuronosyltransferase 1 family, polypeptide A3; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (534 aa)
ADH7alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide; Could function in retinol oxidation for the synthesis of retinoic acid, a hormone important for cellular differentiation. Medium-chain (octanol) and aromatic (m-nitrobenzaldehyde) compounds are the best substrates. Ethanol is not a good substrate but at the high ethanol concentrations reached in the digestive tract, it plays a role in the ethanol oxidation and contributes to the first pass ethanol metabolism (394 aa)
ALDH6A1aldehyde dehydrogenase 6 family, member A1; Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA (535 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (39%)