Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
GABRP GABRP ANO2 ANO2 GABRG3 GABRG3 GABRA6 GABRA6 GLRA4 GLRA4 GABRB1 GABRB1 GABRB2 GABRB2 GABRE GABRE BEST2 BEST2 BEST1 BEST1 CFTR CFTR GABRR2 GABRR2 FXYD1 FXYD1 ANO1 ANO1 GLRA3 GLRA3 TTYH2 TTYH2 CLCNKB CLCNKB GABRA2 GABRA2 GABRD GABRD GLRA1 GLRA1 CLIC4 CLIC4 GABRR3 GABRR3 CLCN2 CLCN2 GABRA3 GABRA3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CFTRcystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7); Involved in the transport of chloride ions. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the SLC4A7 transporter. Can inhibit the chloride channel activity of ANO1 (1480 aa)
BEST2bestrophin 2; Forms calcium-sensitive chloride channels. Permeable to bicarbonate (509 aa)
GABRPgamma-aminobutyric acid (GABA) A receptor, pi; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone (440 aa)
CLCN2chloride channel, voltage-sensitive 2; Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport (898 aa)
TTYH2tweety homolog 2 (Drosophila); Probable large-conductance Ca(2+)-activated chloride channel. May play a role in Ca(2+) signal transduction. May be involved in cell proliferation and cell aggregation (534 aa)
GLRA3glycine receptor, alpha 3; The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing) (464 aa)
GABRA6gamma-aminobutyric acid (GABA) A receptor, alpha 6; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (453 aa)
GABRB2gamma-aminobutyric acid (GABA) A receptor, beta 2; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (512 aa)
GABRB1gamma-aminobutyric acid (GABA) A receptor, beta 1; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (474 aa)
ANO2anoctamin 2; Calcium-activated chloride channel (CaCC) which may play a role in olfactory signal transduction. Odorant molecules bind to odor-sensing receptors (OSRs), leading to an increase in calcium entry that activates CaCC current which amplifies the depolarization of the OSR cells, ANO2 seems to be the underlying chloride channel involved in this process. May mediate light perception amplification in retina (998 aa)
GABRG3gamma-aminobutyric acid (GABA) A receptor, gamma 3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (467 aa)
FXYD1FXYD domain containing ion transport regulator 1; May have a functional role in muscle contraction. Induces a hyperpolarization-activated chloride current when exogenously expressed (92 aa)
ANO1anoctamin 1, calcium activated chloride channel; Calcium-activated chloride channel (CaCC) which plays a role in transepithelial anion transport and smooth muscle contraction. Required for the normal functioning of the interstitial cells of Cajal (ICCs) which generate electrical pacemaker activity in gastrointestinal smooth muscles. Acts as a major contributor to basal and stimulated chloride conductance in airway epithelial cells and plays an important role in tracheal cartilage development (986 aa)
GABRA2gamma-aminobutyric acid (GABA) A receptor, alpha 2; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (451 aa)
GABRA3gamma-aminobutyric acid (GABA) A receptor, alpha 3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (492 aa)
GABREgamma-aminobutyric acid (GABA) A receptor, epsilon; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (506 aa)
GLRA4glycine receptor, alpha 4; The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing) (417 aa)
CLIC4chloride intracellular channel 4; Can insert into membranes and form poorly selective ion channels that may also transport chloride ions. Channel activity depends on the pH. Membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. Promotes cell- surface expression of HRH3. Has alternate cellular functions like a potential role in angiogenesis or in maintaining apical- basolateral membrane polarity during mitosis and cytokinesis. Could also promote endothelial cell proliferation and regulate endothelial morphogenesis (tubulogenesis) (253 aa)
CLCNKBchloride channel, voltage-sensitive Kb; Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms (687 aa)
GABRDgamma-aminobutyric acid (GABA) A receptor, delta; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (452 aa)
GABRR2gamma-aminobutyric acid (GABA) A receptor, rho 2; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission (490 aa)
BEST1bestrophin 1; Forms calcium-sensitive chloride channels. Highly permeable to bicarbonate (604 aa)
GLRA1glycine receptor, alpha 1; The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing) (457 aa)
GABRR3gamma-aminobutyric acid (GABA) A receptor, rho 3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (By similarity) (467 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (28%)