Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
COX6A1 COX6A1 CYCS CYCS NDUFB7 NDUFB7 UQCRH UQCRH UQCR10 UQCR10 COX6A2 COX6A2 UQCRC2 UQCRC2 TMCO1 TMCO1 NDUFS8 NDUFS8 UQCRB UQCRB MT-CYB MT-CYB COX5B COX5B AFG3L2 AFG3L2 UQCRC1 UQCRC1 PMPCB PMPCB UQCRQ UQCRQ CYC1 CYC1 UQCRFS1 UQCRFS1 ILVBL ILVBL ENSG00000269383 ENSG00000269383 ENSG00000111780 ENSG00000111780 COX6A1P2 COX6A1P2 PMPCA PMPCA SFXN1 SFXN1 ALDH3A2 ALDH3A2 SFXN3 SFXN3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
UQCRC1ubiquinol-cytochrome c reductase core protein I; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1 (480 aa)
NDUFB7NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (137 aa)
SFXN3sideroflexin 3; Potential iron transporter (325 aa)
COX6A1cytochrome c oxidase subunit VIa polypeptide 1; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (109 aa)
PMPCBpeptidase (mitochondrial processing) beta; Cleaves presequences (transit peptides) from mitochondrial protein precursors (By similarity) (489 aa)
COX5Bcytochrome c oxidase subunit Vb; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (129 aa)
ILVBLilvB (bacterial acetolactate synthase)-like (632 aa)
UQCRC2ubiquinol-cytochrome c reductase core protein II; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex (453 aa)
AFG3L2AFG3 ATPase family member 3-like 2 (S. cerevisiae); ATP-dependent protease which is essential for axonal development (By similarity) (797 aa)
UQCRBubiquinol-cytochrome c reductase binding protein; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This component is involved in redox-linked proton pumping (111 aa)
COX6A2cytochrome c oxidase subunit VIa polypeptide 2; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (97 aa)
UQCRFS1ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis (274 aa)
CYCScytochrome c, somatic; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (By similarity) (105 aa)
UQCRHubiquinol-cytochrome c reductase hinge protein; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1 (91 aa)
NDUFS8NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone (210 aa)
SFXN1sideroflexin 1; Might be involved in the transport of a component required for iron utilization into or out of the mitochondria (322 aa)
CYC1cytochrome c-1; This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain (325 aa)
UQCR10ubiquinol-cytochrome c reductase, complex III subunit X; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit interacts with cytochrome c1 (By similarity) (63 aa)
ALDH3A2aldehyde dehydrogenase 3 family, member A2; Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid (508 aa)
MT-CYBmitochondrially encoded cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis (By similarity) (380 aa)
PMPCApeptidase (mitochondrial processing) alpha; Cleaves presequences (transit peptides) from mitochondrial protein precursors (By similarity) (525 aa)
UQCRQubiquinol-cytochrome c reductase, complex III subunit VII, 9.5kDa; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit, together with cytochrome b, binds to ubiquinone (82 aa)
TMCO1transmembrane and coiled-coil domains 1 (188 aa)
COX6A1P2cytochrome c oxidase subunit VIa polypeptide 1 pseudogene 2 (109 aa)
ENSG00000111780Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial (168 aa)
ENSG00000269383Uncharacterized protein; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (By similarity) (100 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (52%)