Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
COA3 COA3 PTPMT1 PTPMT1 C15orf48 C15orf48 COQ9 COQ9 COPB1 COPB1 SARS SARS SSR1 SSR1 RPN1 RPN1 NDUFS4 NDUFS4 NDUFA4 NDUFA4 ATAD3A ATAD3A ATP5L ATP5L KCTD3 KCTD3 NDUFB8 NDUFB8 SPTBN5 SPTBN5 SPTBN2 SPTBN2 UQCRC2 UQCRC2 SPTBN4 SPTBN4 CYC1 CYC1 SPTA1 SPTA1 SPTAN1 SPTAN1 SLC25A3 SLC25A3 OCIAD1 OCIAD1 SHKBP1 SHKBP1 VCP VCP PHB2 PHB2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SLC25A3solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3; Transport of phosphate groups from the cytosol to the mitochondrial matrix. Phosphate is cotransported with H(+). May play a role regulation of the mitochondrial permeability transition pore (mPTP) (362 aa)
SARSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also probably able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec) (514 aa)
SSR1signal sequence receptor, alpha (286 aa)
COPB1coatomer protein complex, subunit beta 1; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; th [...] (953 aa)
KCTD3potassium channel tetramerisation domain containing 3 (815 aa)
COQ9coenzyme Q9 homolog (S. cerevisiae); Involved in the biosynthesis of coenzyme Q (By similarity) (318 aa)
SPTBN4spectrin, beta, non-erythrocytic 4 (2564 aa)
OCIAD1OCIA domain containing 1 (245 aa)
UQCRC2ubiquinol-cytochrome c reductase core protein II; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex (453 aa)
SHKBP1SH3KBP1 binding protein 1 (707 aa)
RPN1ribophorin I; Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains (607 aa)
NDUFS4NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase); Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (175 aa)
NDUFB8NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8, 19kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (186 aa)
ATP5LATP synthase, H+ transporting, mitochondrial Fo complex, subunit G; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a [...] (103 aa)
SPTBN2spectrin, beta, non-erythrocytic 2; Probably plays an important role in neuronal membrane skeleton (2390 aa)
CYC1cytochrome c-1; This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain (325 aa)
SPTBN5spectrin, beta, non-erythrocytic 5 (3674 aa)
PTPMT1protein tyrosine phosphatase, mitochondrial 1; Lipid phosphatase which dephosphorylates phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). PGP is an essential intermediate in the biosynthetic pathway of cardiolipin, a mitochondrial-specific phospholipid regulating the membrane integrity and activities of the organelle. Has also been shown to display phosphatase activity toward phosphoprotein substrates, specifically mediates dephosphorylation of mitochondrial proteins, thereby playing an essential role in ATP production. Has probably a preference for proteins phosphorylat [...] (201 aa)
NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (81 aa)
C15orf48chromosome 15 open reading frame 48 (83 aa)
VCPvalosin containing protein; Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1L, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the e [...] (806 aa)
COA3cytochrome c oxidase assembly factor 3; Component of some MITRAC complex, a cytochrome c oxidase (COX) assembly intermediate complex that regulates COX assembly. MITRAC complexes regulate both translation of mitochondrial encoded components and assembly of nuclear-encoded components imported in mitochondrion. Required for efficient translation of MT-CO1 and mitochondrial respiratory chain complex IV assembly (106 aa)
SPTA1spectrin, alpha, erythrocytic 1 (elliptocytosis 2); Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane (2419 aa)
SPTAN1spectrin, alpha, non-erythrocytic 1 (2477 aa)
ATAD3AATPase family, AAA domain containing 3A; Essential for mitochondrial network organization, mitochondrial metabolism and cell growth at organism and cellular level. May play an important in mitochondrial protein synthesis. May also participate in mitochondrial DNA replication. May bind to mitochondrial DNA D-loops and contribute to nucleoid stability. Required for enhanced channeling of cholesterol for hormone- dependent steroidogenesis (634 aa)
PHB2prohibitin 2; Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases (By similarity). Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity. Probably involved in regulating mitochondrial respiration activity and in aging (299 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (49%)