Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
GFOD2 GFOD2 DHDH DHDH BLMH BLMH GALK2 GALK2 GALK1 GALK1 GALM GALM TMED9 TMED9 UGDH UGDH TRIP13 TRIP13 FAN1 FAN1 GALE GALE LALBA LALBA UBC UBC B4GALT1 B4GALT1 B4GALT2 B4GALT2 UGP2 UGP2 GALT GALT PRKAR2B PRKAR2B TNK2 TNK2 PRKAR2A PRKAR2A PRKAR1A PRKAR1A PGM1 PGM1 PRKAR1B PRKAR1B PGM2 PGM2 UAP1 UAP1 UAP1L1 UAP1L1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
TRIP13thyroid hormone receptor interactor 13; Plays a key role in chromosome recombination and chromosome structure development during meiosis. Required at early steps in meiotic recombination that leads to non-crossovers pathways. Also needed for efficient completion of homologous synapsis by influencing crossover distribution along the chromosomes affecting both crossovers and non-crossovers pathways. Also required for development of higher-order chromosome structures and is needed for synaptonemal-complex formation. In males, required for efficient synapsis of the sex chromosomes and for [...] (432 aa)
DHDHdihydrodiol dehydrogenase (dimeric) (334 aa)
GALK1galactokinase 1; Major enzyme for galactose metabolism (392 aa)
BLMHbleomycin hydrolase; The normal physiological role of BLM hydrolase is unknown, but it catalyzes the inactivation of the antitumor drug BLM (a glycopeptide) by hydrolyzing the carboxamide bond of its B- aminoalaninamide moiety thus protecting normal and malignant cells from BLM toxicity (By similarity) (455 aa)
PRKAR2Aprotein kinase, cAMP-dependent, regulatory, type II, alpha; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase (404 aa)
PRKAR2Bprotein kinase, cAMP-dependent, regulatory, type II, beta; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase (418 aa)
GFOD2glucose-fructose oxidoreductase domain containing 2; Promotes matrix assembly (By similarity) (385 aa)
GALMgalactose mutarotase (aldose 1-epimerase); Mutarotase converts alpha-aldose to the beta-anomer. It is active on D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose (By similarity) (342 aa)
LALBAlactalbumin, alpha-; Regulatory subunit of lactose synthase, changes the substrate specificity of galactosyltransferase in the mammary gland making glucose a good acceptor substrate for this enzyme. This enables LS to synthesize lactose, the major carbohydrate component of milk. In other tissues, galactosyltransferase transfers galactose onto the N-acetylglucosamine of the oligosaccharide chains in glycoproteins (142 aa)
B4GALT2UDP-Gal-betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 2 (401 aa)
UGDHUDP-glucose 6-dehydrogenase; Involved in the biosynthesis of glycosaminoglycans; hyaluronan, chondroitin sulfate, and heparan sulfate (494 aa)
TMED9transmembrane emp24 protein transport domain containing 9; Appears to be involved in vesicular protein trafficking, mainly in the early secretory pathway. In COPI vesicle-mediated retrograde transport involved in the coatomer recruitment to membranes of the early secretory pathway. Increases coatomer- dependent activity of ARFGAP2. Thought to play a crucial role in the specific retention of p24 complexes in cis-Golgi membranes; specifically contributes to the coupled localization of TMED2 and TMED10 in the cis-Golgi network. May be involved in organization of intracellular membranes, s [...] (235 aa)
UGP2UDP-glucose pyrophosphorylase 2; Plays a central role as a glucosyl donor in cellular metabolic pathways (508 aa)
UBCubiquitin C (685 aa)
PRKAR1Aprotein kinase, cAMP-dependent, regulatory, type I, alpha; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells (381 aa)
PRKAR1Bprotein kinase, cAMP-dependent, regulatory, type I, beta; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells (381 aa)
FAN1FANCD2/FANCI-associated nuclease 1; Nuclease required for maintenance of chromosomal stability. Plays a key role in DNA repair of DNA interstrand cross-links (ICL) by being recruited to sites of DNA damage by monoubiquitinated FANCD2. Specifically involved in repair of ICL- induced DNA breaks by being required for efficient homologous recombination, possibly in the resolution of homologous recombination intermediates. Not involved in DNA double-strand breaks resection. Has both endonuclease activity toward 5’-flaps and 5’-exonuclease activity- may act in concert with the 3’-flap- speci [...] (1017 aa)
UAP1UDP-N-acteylglucosamine pyrophosphorylase 1; Converts UDP and GlcNAc-1-P into UDP-GlcNAc, and UDP and GalNAc-1-P into UDP-GalNAc. Isoform AGX1 has 2 to 3 times higher activity towards GalNAc-1-P, while isoform AGX2 has 8 times more activity towards GlcNAc-1-P (505 aa)
PGM1phosphoglucomutase 1 (580 aa)
GALEUDP-galactose-4-epimerase; Catalyzes two distinct but analogous reactions- the epimerization of UDP-glucose to UDP-galactose and the epimerization of UDP-N-acetylglucosamine to UDP-N- acetylgalactosamine (348 aa)
GALTgalactose-1-phosphate uridylyltransferase (379 aa)
B4GALT1UDP-Gal-betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 (398 aa)
TNK2tyrosine kinase, non-receptor, 2; Non-receptor tyrosine-protein and serine/threonine- protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the [...] (1086 aa)
PGM2phosphoglucomutase 2; Catalyzes the conversion of the nucleoside breakdown products ribose-1-phosphate and deoxyribose-1-phosphate to the corresponding 5-phosphopentoses. May also catalyze the interconversion of glucose-1-phosphate and glucose-6-phosphate. Has low glucose 1,6-bisphosphate synthase activity (612 aa)
UAP1L1UDP-N-acteylglucosamine pyrophosphorylase 1-like 1 (507 aa)
GALK2galactokinase 2; Acts on GalNAc. Also acts as a galactokinase when galactose is present at high concentrations. May be involved in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates (458 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (27%)