Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
EIF2S3 EIF2S3 RPL27 RPL27 EIF4B EIF4B RPL35 RPL35 RPL36 RPL36 RPL30 RPL30 EIF3E EIF3E RPL6 RPL6 EIF3C EIF3C RPL8 RPL8 EIF5B EIF5B EIF3D EIF3D RPL26L1 RPL26L1 RPL13 RPL13 RPL19 RPL19 EIF3K EIF3K EIF3A EIF3A RPL29 RPL29 RPL26 RPL26 RPL3L RPL3L EIF4A1 EIF4A1 RPL37 RPL37 RPL18A RPL18A EIF1AX EIF1AX IPO13 IPO13 RAN RAN
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
RPL6ribosomal protein L6; Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (288 aa)
EIF3Deukaryotic translation initiation factor 3, subunit D; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (548 aa)
EIF3Eeukaryotic translation initiation factor 3, subunit E; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (445 aa)
RPL18Aribosomal protein L18a (176 aa)
RPL19ribosomal protein L19 (196 aa)
EIF3Keukaryotic translation initiation factor 3, subunit K; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (218 aa)
RPL36ribosomal protein L36 (105 aa)
EIF2S3eukaryotic translation initiation factor 2, subunit 3 gamma, 52kDa; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a re [...] (472 aa)
RPL27ribosomal protein L27 (136 aa)
RPL35ribosomal protein L35 (123 aa)
EIF4Beukaryotic translation initiation factor 4B; Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5’- terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F (611 aa)
RPL8ribosomal protein L8 (257 aa)
RPL26L1ribosomal protein L26-like 1 (145 aa)
RPL3Lribosomal protein L3-like (407 aa)
RPL37ribosomal protein L37; Binds to the 23S rRNA (By similarity) (97 aa)
RPL30ribosomal protein L30 (115 aa)
EIF5Beukaryotic translation initiation factor 5B; Function in general translation initiation by promoting the binding of the formylmethionine-tRNA to ribosomes. Seems to function along with eIF-2 (By similarity) (1220 aa)
EIF4A1eukaryotic translation initiation factor 4A1; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon (406 aa)
RPL26ribosomal protein L26 (145 aa)
RPL29ribosomal protein L29 (159 aa)
RPL13ribosomal protein L13 (211 aa)
EIF3Ceukaryotic translation initiation factor 3, subunit C; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (913 aa)
EIF3Aeukaryotic translation initiation factor 3, subunit A; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (1382 aa)
IPO13importin 13; Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis r [...] (963 aa)
EIF1AXeukaryotic translation initiation factor 1A, X-linked; Seems to be required for maximal rate of protein biosynthesis. Enhances ribosome dissociation into subunits and stabilizes the binding of the initiator Met-tRNA(I) to 40 S ribosomal subunits (144 aa)
RANRAN, member RAS oncogene family (216 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (38%)