Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
GPN3 GPN3 LIG3 LIG3 PARP1 PARP1 NCL NCL TDP1 TDP1 POLM POLM XRCC1 XRCC1 XRCC4 XRCC4 DDX21 DDX21 DCLRE1C DCLRE1C XRCC5 XRCC5 TP53 TP53 APTX APTX HSPA4 HSPA4 PRKDC PRKDC APEX2 APEX2 LIG4 LIG4 APEX1 APEX1 RAD51 RAD51 RAD52 RAD52 DMC1 DMC1 FANCM FANCM RAD51B RAD51B RAD51D RAD51D ENSG00000267618 ENSG00000267618
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
DMC1DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous recombination (yeast); May participate in meiotic recombination, specifically in homologous strand assimilation, which is required for the resolution of meiotic double-strand breaks (By similarity) (340 aa)
APEX1APEX nuclease (multifunctional DNA repair enzyme) 1; Multifunctional protein that plays a central role in the cellular response to oxidative stress. The two major activities of APEX1 in DNA repair and redox regulation of transcriptional factors. Functions as a apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents. Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5’ [...] (318 aa)
POLMpolymerase (DNA directed), mu; Gap-filling polymerase involved in repair of DNA double- strand breaks by non-homologous end joining (NHEJ). Participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination (494 aa)
XRCC1X-ray repair complementing defective repair in Chinese hamster cells 1; Corrects defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents (633 aa)
FANCMFanconi anemia, complementation group M; ATPase required for FANCD2 ubiquitination, a key reaction in DNA repair. Binds to ssDNA but not to dsDNA. Recruited to forks stalled by DNA interstrand cross-links, and required for cellular resistance to such lesions (2048 aa)
TP53tumor protein p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (By similarity) (393 aa)
HSPA4heat shock 70kDa protein 4 (840 aa)
PRKDCprotein kinase, DNA-activated, catalytic polypeptide (4127 aa)
NCLnucleolin; Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5’-UUAGGG-3’ repeats more tightly than the telomeric single-stranded DNA 5’-TTAGGG-3’ repeats (710 aa)
TDP1tyrosyl-DNA phosphodiesterase 1; DNA repair enzyme that can remove a variety of covalent adducts from DNA through hydrolysis of a 3’-phosphodiester bond, giving rise to DNA with a free 3’ phosphate. Catalyzes the hydrolysis of dead-end complexes between DNA and the topoisomerase I active site tyrosine residue. Hydrolyzes 3’-phosphoglycolates on protruding 3’ ends on DNA double-strand breaks due to DNA damage by radiation and free radicals. Acts on blunt-ended double-strand DNA breaks and on single-stranded DNA. Has low 3’exonuclease activity and can remove a single nucleoside from the [...] (608 aa)
XRCC4X-ray repair complementing defective repair in Chinese hamster cells 4; Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. Binds to DNA and to DNA ligase IV (LIG4). The LIG4-XRCC4 complex is responsible for the NHEJ ligation step, and XRCC4 enhances the joining activity of LIG4. Binding of the LIG4-XRCC4 complex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends (336 aa)
DDX21DEAD (Asp-Glu-Ala-Asp) box helicase 21; Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase). Functions as cofactor for JUN-activated transcription. Involved in rRNA processing (783 aa)
LIG4ligase IV, DNA, ATP-dependent; Efficiently joins single-strand breaks in a double- stranded polydeoxynucleotide in an ATP-dependent reaction. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The LIG4-XRCC4 complex is responsible for the NHEJ ligation step, and XRCC4 enhances the joining activity of LIG4. Binding of the LIG4-XRCC4 complex to DNA ends is dependent on the assembly of the DNA- dependent protein kinase complex DNA-PK to these DNA ends (911 aa)
RAD52RAD52 homolog (S. cerevisiae); Involved in double-stranded break repair. Plays a central role in genetic recombination and DNA repair by promoting the annealing of complementary single-stranded DNA and by stimulation of the RAD51 recombinase (418 aa)
PARP1poly (ADP-ribose) polymerase 1; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP- ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a [...] (1014 aa)
APEX2APEX nuclease (apurinic/apyrimidinic endonuclease) 2; Function as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents. Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5’-deoxyribose phosphate and 3’-hydroxyl ends. Displays also double-stranded DNA 3’-5’ exonuclease, 3’-phosphodiesterase activities. Shows robust 3’-5’ exonuclease activity on 3’-recessed he [...] (518 aa)
DCLRE1CDNA cross-link repair 1C (692 aa)
LIG3ligase III, DNA, ATP-dependent; Interacts with DNA-repair protein XRCC1 and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents (1009 aa)
APTXaprataxin (342 aa)
RAD51RAD51 homolog (S. cerevisiae); Participates in a common DNA damage response pathway associated with the activation of homologous recombination and double-strand break repair. Binds to single and double stranded DNA and exhibits DNA-dependent ATPase activity. Underwinds duplex DNA and forms helical nucleoprotein filaments. Plays a role in regulating mitochondrial DNA copy number under conditions of oxidative stress in the presence of RAD51C and XRCC3 (340 aa)
XRCC5X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining); Single stranded DNA-dependent ATP-dependent helicase. Has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3’-5’ direction. Binding to DNA may be mediated by XRCC6. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The XRCC5/6 dimer acts as regulatory subunit of the DNA-dependent protein kinase [...] (732 aa)
RAD51BRAD51 homolog B (S. cerevisiae) (384 aa)
GPN3GPN-loop GTPase 3 (323 aa)
RAD51DRAD51 homolog D (S. cerevisiae) (348 aa)
ENSG00000267618Uncharacterized protein (272 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (35%)