Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
KIR2DL4 KIR2DL4 UBE2C UBE2C UBE2L6 UBE2L6 UBE2H UBE2H UBE2L3 UBE2L3 AGFG1 AGFG1 SUMO2 SUMO2 UBC UBC RNF216 RNF216 RNF11 RNF11 TLR5 TLR5 TRAF3 TRAF3 TLR4 TLR4 RIPK1 RIPK1 TICAM1 TICAM1 TIRAP TIRAP IKBKB IKBKB TLR9 TLR9 TLR3 TLR3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
RNF11ring finger protein 11; Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. Promotes the association of TNFAIP3 to RIPK1 after TNF stimulation. TNFAIP3 deubiquitinates ’Lys-63’ polyubiquitin chains on RIPK1 and catalyzes the formation of ’Lys-48’-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Recruits STAMBP to the E3 ubiquitin-ligase SMURF2 for ubiquitination, leadi [...] (154 aa)
TICAM1toll-like receptor adaptor molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3 and TLR4 (through TICAM2) to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein- interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively (712 aa)
RIPK1receptor (TNFRSF)-interacting serine-threonine kinase 1; Serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage. Upon activation of TNFR1 by the TNF-alpha family cytokines, TRADD and TRAF2 are recruited to the receptor. Phosphorylates DAB2IP at ’Ser-728’ in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade. Ubiquitination by TRAF2 via ’Lys-63’-link chains acts as a critical enhancer of communication with d [...] (671 aa)
UBE2L6ubiquitin-conjugating enzyme E2L 6; Catalyzes the covalent attachment of ubiquitin or ISG15 to other proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Promotes ubiquitination and subsequent proteasomal degradation of FLT3 (153 aa)
TLR3toll-like receptor 3; Key component of innate and adaptive immunity. TLRs (Toll-like receptors) control host immune response against pathogens through recognition of molecular patterns specific to microorganisms. TLR3 is a nucleotide-sensing TLR which is activated by double-stranded RNA, a sign of viral infection. Acts via the adapter TRIF/TICAM1, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (904 aa)
KIR2DL4killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 4 (342 aa)
TLR5toll-like receptor 5; Participates in the innate immune response to microbial agents. Mediates detection of bacterial flagellins. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (858 aa)
UBE2L3ubiquitin-conjugating enzyme E2L 3; Ubiquitin-conjugating enzyme E2 that specifically acts with HECT-type and RBR family E3 ubiquitin-protein ligases. Does not function with most RING-containing E3 ubiquitin-protein ligases because it lacks intrinsic E3-independent reactivity with lysine- in contrast, it has activity with the RBR family E3 enzymes, such as PARK2 and ARIH1, that function like function like RING-HECT hybrids. Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys-11’-linked polyubiquitination. Involved in th [...] (154 aa)
UBCubiquitin C (685 aa)
UBE2Hubiquitin-conjugating enzyme E2H; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-linked polyubiquitination. Capable, in vitro, to ubiquitinate histone H2A (183 aa)
UBE2Cubiquitin-conjugating enzyme E2C; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis. Acts by initiating ’Lys-11’-linked polyubiquitin chains on APC/C substrates, leading to the degradation of APC/C substrates by the proteasome and promoting mitotic exit (179 aa)
TLR9toll-like receptor 9 (1032 aa)
TLR4toll-like receptor 4 (839 aa)
RNF216ring finger protein 216; Isoform 1 acts as an E3 ubiquitin ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome. Promotes degradation of TRAF3, TLR4 and TLR9. Contributes to the regulation of antiviral responses. Down- regulates activation of NF-kappa-B, IRF3 activation and IFNB production. Isoform 3/ZIN inhibits TNF and IL-1 mediated activation of NF-kappa-B. Promotes TNF and RIP mediated apoptosis (923 aa)
TIRAPtoll-interleukin 1 receptor (TIR) domain containing adaptor protein; Adapter involved in TLR2 and TLR4 signaling pathways in the innate immune response. Acts via IRAK2 and TRAF-6, leading to the activation of NF-kappa-B, MAPK1, MAPK3 and JNK, and resulting in cytokine secretion and the inflammatory response. Positively regulates the production of TNF-alpha and interleukin-6 (235 aa)
TRAF3TNF receptor-associated factor 3; Regulates pathways leading to the activation of NF- kappa-B and MAP kinases, and plays a central role in the regulation of B-cell survival. Part of signaling pathways leading to the production of cytokines and interferon. Required for normal antibody isotype switching from IgM to IgG. Plays a role T-cell dependent immune responses. Plays a role in the regulation of antiviral responses. Is an essential constituent of several E3 ubiquitin-protein ligase complexes. May have E3 ubiquitin-protein ligase activity and promote ’Lys-63’-linked ubiquitination of [...] (568 aa)
AGFG1ArfGAP with FG repeats 1 (584 aa)
SUMO2SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae); Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduc [...] (95 aa)
IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta; Serine kinase that plays an essential role in the NF- kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses. Acts as part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues. These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome. In turn, free NF- [...] (756 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (58%)