Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
HPSE HPSE HS3ST2 HS3ST2 HS6ST2 HS6ST2 HS6ST1 HS6ST1 GLCE GLCE LRP1 LRP1 HSPG2 HSPG2 AGRN AGRN SLC35D2 SLC35D2 CSPG4 CSPG4 LRP8 LRP8 SDC1 SDC1 SDC4 SDC4 APOA4 APOA4 GPC5 GPC5 BCAN BCAN GPC3 GPC3 B3GALT6 B3GALT6 APOB APOB HS3ST3B1 HS3ST3B1 B4GALT7 B4GALT7 MAPK8 MAPK8 CSPG5 CSPG5 EXT1 EXT1 EXT2 EXT2 PTCH1 PTCH1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
B4GALT7xylosylprotein beta 1,4-galactosyltransferase, polypeptide 7; Required for the biosynthesis of the tetrasaccharide linkage region of proteoglycans, especially for small proteoglycans in skin fibroblasts (327 aa)
APOBapolipoprotein B (including Ag(x) antigen) (4563 aa)
LRP1low density lipoprotein receptor-related protein 1; Endocytic receptor involved in endocytosis and in phagocytosis of apoptotic cells. Required for early embryonic development. Involved in cellular lipid homeostasis. Involved in the plasma clearance of chylomicron remnants and activated LRPAP1 (alpha 2-macroglobulin), as well as the local metabolism of complexes between plasminogen activators and their endogenous inhibitors. May modulate cellular events, such as APP metabolism, kinase-dependent intracellular signaling, neuronal calcium signaling as well as neurotransmission (4544 aa)
SLC35D2solute carrier family 35, member D2; Antiporter transporting nucleotide sugars such as UDP-N- acetylglucosamine (UDP-GlcNAc), UDP-glucose (UDP-Glc) and GDP- mannose (GDP-Man) pooled in the cytosol into the lumen of the Golgi in exchange for the corresponding nucleosides monophosphates (UMP for UDP-sugars and GMP for GDP-sugars). May take part in heparan sulfate synthesis by supplying UDP-Glc-NAc, the donor substrate, and thus be involved in growth factor signaling (337 aa)
SDC1syndecan 1; Cell surface proteoglycan that bears both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix (310 aa)
HS6ST1heparan sulfate 6-O-sulfotransferase 1; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3’-phosphoadenosine 5’-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate (411 aa)
HS3ST2heparan sulfate (glucosamine) 3-O-sulfotransferase 2; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N- unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in GlcA2S-GlcNS. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to anticoagulant heparan sulfate (367 aa)
GLCEglucuronic acid epimerase; Converts D-glucuronic acid residues adjacent to N- sulfate sugar residues to L-iduronic acid residues, both in maturing heparan sulfate (HS) and heparin chains. This is important for further modifications that determine the specificity of interactions between these glycosaminoglycans and proteins (617 aa)
LRP8low density lipoprotein receptor-related protein 8, apolipoprotein e receptor; Cell surface receptor for Reelin (RELN) and apolipoprotein E (apoE)-containing ligands. LRP8 participates in transmitting the extracellular Reelin signal to intracellular signaling processes, by binding to DAB1 on its cytoplasmic tail. Reelin acts via both the VLDL receptor (VLDLR) and LRP8 to regulate DAB1 tyrosine phosphorylation and microtubule function in neurons. LRP8 has higher affinity for Reelin than VLDLR. LRP8 is thus a key component of the Reelin pathway which governs neuronal layering of the fore [...] (963 aa)
HPSEheparanase; Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Selectively cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. Can also cleave the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying a 2-O-sulfo group, but not linkages between a glucuronic acid unit and a 2-O-sulfated iduronic acid moiety. It is essentially inactive at ne [...] (543 aa)
CSPG4chondroitin sulfate proteoglycan 4; Proteoglycan playing a role in cell proliferation and migration which stimulates endothelial cells motility during microvascular morphogenesis. May also inhibit neurite outgrowth and growth cone collapse during axon regeneration. Cell surface receptor for collagen alpha 2(VI) which may confer cells ability to migrate on that substrate. Binds through its extracellular N- terminus growth factors, extracellular matrix proteases modulating their activity. May regulate MPP16-dependent degradation and invasion of type I collagen participating in melanoma c [...] (2322 aa)
BCANbrevican; May play a role in the terminally differentiating and the adult nervous system during postnatal development. Could stabilize interactions between hyaluronan (HA) and brain proteoglycans (911 aa)
PTCH1patched 1 (1447 aa)
APOA4apolipoprotein A-IV; May have a role in chylomicrons and VLDL secretion and catabolism. Required for efficient activation of lipoprotein lipase by ApoC-II; potent activator of LCAT. Apoa-IV is a major component of HDL and chylomicrons (396 aa)
MAPK8mitogen-activated protein kinase 8; Serine/threonine-protein kinase involved in various processes such as cell proliferation, differentiation, migration, transformation and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK8/JNK1. In turn, MAPK8/JNK1 phosphorylates a number of transcription factors, primarily components of AP-1 such as JU [...] (427 aa)
HS3ST3B1heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N- unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in IdoUA2S-GlcNS and also in IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes simplex virus-1 (HSV-1) and permits its entry. Unlike 3-OST-1, does not convert non- anticoagulant heparan sulfate to an [...] (390 aa)
SDC4syndecan 4; Cell surface proteoglycan that bears heparan sulfate (198 aa)
HSPG2heparan sulfate proteoglycan 2; Integral component of basement membranes. Component of the glomerular basement membrane (GBM), responsible for the fixed negative electrostatic membrane charge, and which provides a barrier which is both size- and charge-selective. It serves as an attachment substrate for cells. Plays essential roles in vascularization. Critical for normal heart development and for regulating the vascular response to injury. Also required for avascular cartilage development (4391 aa)
GPC5glypican 5; Cell surface proteoglycan that bears heparan sulfate (By similarity) (572 aa)
EXT1exostosin 1; Glycosyltransferase required for the biosynthesis of heparan-sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor (746 aa)
B3GALT6UDP-Gal-betaGal beta 1,3-galactosyltransferase polypeptide 6; Beta-1,3-galactosyltransferase that transfers galactose from UDP-galactose to substrates with a terminal beta-linked galactose residue. Has a preference for galactose-beta-1,4-xylose that is found in the linker region of glycosaminoglycans, such as heparan sulfate and chondroitin sulfate. Has no activity towards substrates with terminal glucosamine or galactosamine residues (329 aa)
AGRNagrin; Agrin N-terminal 110 kDa subunit- is involved in regulation of neurite outgrowth probably due to the presence of the glycosaminoglcan (GAG) side chains of heparan and chondroitin sulfate attached to the Ser/Thr- and Gly/Ser-rich regions. Also involved in modulation of growth factor signaling (By similarity) (2045 aa)
CSPG5chondroitin sulfate proteoglycan 5 (neuroglycan C); May function as a growth and differentiation factor involved in neuritogenesis. May induce ERBB3 activation (566 aa)
GPC3glypican 3; Cell surface proteoglycan that bears heparan sulfate. Inhibits the dipeptidyl peptidase activity of DPP4. May be involved in the suppression/modulation of growth in the predominantly mesodermal tissues and organs. May play a role in the modulation of IGF2 interactions with its receptor and thereby modulate its function. May regulate growth and tumor predisposition (603 aa)
EXT2exostosin 2; Glycosyltransferase required for the biosynthesis of heparan-sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor (751 aa)
HS6ST2heparan sulfate 6-O-sulfotransferase 2 (645 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (47%)