Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
ALPI ALPI ALPPL2 ALPPL2 ALPP ALPP NME7 NME7 PTS PTS ADCY3 ADCY3 ADCY5 ADCY5 POLR2J POLR2J ALPL ALPL GCH1 GCH1 POLR1A POLR1A ADCY6 ADCY6 GCHFR GCHFR GUCY1A3 GUCY1A3 POLR2K POLR2K POLR3K POLR3K POLR1E POLR1E POLR2G POLR2G POLR2L POLR2L ENTPD3 ENTPD3 MOCS1 MOCS1 ITPA ITPA NME1 NME1 POLR2J2 POLR2J2 GUCY1B3 GUCY1B3 NME1-NME2 NME1-NME2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NME1NME/NM23 nucleoside diphosphate kinase 1; Major role in the synthesis of nucleoside triphosphates other than ATP. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3’-5’ exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein- coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination (177 aa)
GCHFRGTP cyclohydrolase I feedback regulator; Mediates tetrahydrobiopterin inhibition of GTP cyclohydrolase 1. This inhibition is reversed by L-phenylalanine (84 aa)
ADCY3adenylate cyclase 3; Mediates odorant detection (possibly) via modulation of intracellular cAMP concentration (1144 aa)
POLR1Apolymerase (RNA) I polypeptide A, 194kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of [...] (1720 aa)
GUCY1B3guanylate cyclase 1, soluble, beta 3 (619 aa)
PTS6-pyruvoyltetrahydropterin synthase; Involved in the biosynthesis of tetrahydrobiopterin, an essential cofactor of aromatic amino acid hydroxylases. Catalyzes the transformation of 7,8-dihydroneopterin triphosphate into 6- pyruvoyl tetrahydropterin (145 aa)
POLR2Jpolymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity) (117 aa)
POLR3Kpolymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase III which synthesizes small RNAs, such as 5S rRNA and tRNAs. Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein [...] (108 aa)
ALPPL2alkaline phosphatase, placental-like 2 (532 aa)
ALPIalkaline phosphatase, intestinal (528 aa)
GUCY1A3guanylate cyclase 1, soluble, alpha 3 (690 aa)
POLR2Gpolymerase (RNA) II (DNA directed) polypeptide G; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB7 is part of a subcomplex with RPB4 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex s [...] (172 aa)
ENTPD3ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
ADCY6adenylate cyclase 6; Membrane-bound, calcium-inhibitable adenylyl cyclase (By similarity) (1168 aa)
POLR2Lpolymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2L/RBP10 is part of the [...] (67 aa)
POLR2Kpolymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively (58 aa)
NME7NME/NM23 family member 7; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (376 aa)
MOCS1molybdenum cofactor synthesis 1 (385 aa)
ALPLalkaline phosphatase, liver/bone/kidney (524 aa)
POLR1Epolymerase (RNA) I polypeptide E, 53kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Appears to be involved in the formation of the initiation complex at the promoter by mediating the interaction between Pol I and UBTF/UBF (By similarity) (419 aa)
ITPAinosine triphosphatase (nucleoside triphosphate pyrophosphatase) (194 aa)
ALPPalkaline phosphatase, placental (535 aa)
NME1-NME2NME1-NME2 readthrough; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity) (152 aa)
GCH1GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown (250 aa)
POLR2J2polymerase (RNA) II (DNA directed) polypeptide J2 (115 aa)
ADCY5adenylate cyclase 5; This is a membrane-bound, calcium-inhibitable adenylyl cyclase (1261 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (61%)