Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
HIST2H3C HIST2H3C HIST2H2BE HIST2H2BE HIST2H3A HIST2H3A HIST1H1A HIST1H1A PARP3 PARP3 PARP2 PARP2 PARP1 PARP1 APOE APOE XRCC6 XRCC6 RPA4 RPA4 XRCC5 XRCC5 GZMB GZMB RFC4 RFC4 RPA2 RPA2 LIG4 LIG4 RFC3 RFC3 RFC1 RFC1 RFC2 RFC2 OBFC1 OBFC1 EXOC1 EXOC1 RFC5 RFC5 RPL14 RPL14 RPL27 RPL27 RPL6 RPL6 SF3A3 SF3A3 PRPF6 PRPF6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
RFC2replication factor C (activator 1) 2, 40kDa (354 aa)
RPL6ribosomal protein L6; Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (288 aa)
GZMBgranzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1); This enzyme is necessary for target cell lysis in cell- mediated immune responses. It cleaves after Asp. Seems to be linked to an activation cascade of caspases (aspartate-specific cysteine proteases) responsible for apoptosis execution. Cleaves caspase-3, -7, -9 and 10 to give rise to active enzymes mediating apoptosis (247 aa)
OBFC1oligonucleotide/oligosaccharide-binding fold containing 1; Component of the CST complex, a complex that binds to single-stranded DNA and is required to protect telomeres from DNA degradation. The CST complex binds single-stranded DNA with high affinity in a sequence-independent manner, while isolated subunits bind DNA with low affinity by themselves. In addition to telomere protection, the CST complex has probably a more general role in DNA metabolism at non-telomeric sites (368 aa)
HIST1H1Ahistone cluster 1, H1a; Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Acts also as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity) (215 aa)
PARP2poly (ADP-ribose) polymerase 2; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks (583 aa)
APOEapolipoprotein E; Mediates the binding, internalization, and catabolism of lipoprotein particles. It can serve as a ligand for the LDL (apo B/E) receptor and for the specific apo-E receptor (chylomicron remnant) of hepatic tissues (317 aa)
RPL27ribosomal protein L27 (136 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
RFC4replication factor C (activator 1) 4, 37kDa; The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1. This subunit may be involved in the elongation of the multiprimed DNA template (363 aa)
EXOC1exocyst complex component 1; Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane (894 aa)
RPL14ribosomal protein L14 (215 aa)
LIG4ligase IV, DNA, ATP-dependent; Efficiently joins single-strand breaks in a double- stranded polydeoxynucleotide in an ATP-dependent reaction. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The LIG4-XRCC4 complex is responsible for the NHEJ ligation step, and XRCC4 enhances the joining activity of LIG4. Binding of the LIG4-XRCC4 complex to DNA ends is dependent on the assembly of the DNA- dependent protein kinase complex DNA-PK to these DNA ends (911 aa)
XRCC6X-ray repair complementing defective repair in Chinese hamster cells 6; Single stranded DNA-dependent ATP-dependent helicase. Has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3’-5’ direction. Binding to DNA may be mediated by XRCC6. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The XRCC5/6 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the [...] (609 aa)
PARP1poly (ADP-ribose) polymerase 1; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP- ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a [...] (1014 aa)
HIST2H2BEhistone cluster 2, H2be (126 aa)
HIST2H3Chistone cluster 2, H3c (136 aa)
SF3A3splicing factor 3a, subunit 3, 60kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (501 aa)
RPA4replication protein A4, 30kDa; Functions as component of the alternative replication protein A complex (aRPA). aRPA binds single-stranded DNA and probably plays a role in DNA repair; it does not support chromosomal DNA replication and cell cycle progression through S- phase. In vitro, aRPA cannot promote efficient priming by DNA polymerase alpha but supports DNA polymerase delta synthesis in the presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (261 aa)
RPA2replication protein A2, 32kDa; Required for DNA recombination, repair and replication. The activity of RP-A is mediated by single-stranded DNA binding and protein interactions. Required for the efficient recruitment of the DNA double-strand break repair factor RAD51 to chromatin in response to DNA damage (270 aa)
RFC3replication factor C (activator 1) 3, 38kDa; The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1 (356 aa)
RFC1replication factor C (activator 1) 1, 145kDa; The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins PCNA and activator 1. This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Could play a role in DNA transcription regulation as well as DNA replication and/or repair. Can bind single- or double-stranded DNA (1148 aa)
XRCC5X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining); Single stranded DNA-dependent ATP-dependent helicase. Has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3’-5’ direction. Binding to DNA may be mediated by XRCC6. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The XRCC5/6 dimer acts as regulatory subunit of the DNA-dependent protein kinase [...] (732 aa)
PARP3poly (ADP-ribose) polymerase family, member 3; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. May link the DNA damage surveillance network to the mitotic fidelity checkpoint. Negatively influences the G1/S cell cycle progression without interfering with centrosome duplication. Binds DNA. May b [...] (540 aa)
HIST2H3Ahistone cluster 2, H3a (136 aa)
RFC5replication factor C (activator 1) 5, 36.5kDa; The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1 (340 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (42%)