Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
EIF2C1 EIF2C1 EIF2AK4 EIF2AK4 EIF2S1 EIF2S1 KARS KARS EIF2S2 EIF2S2 ENSG00000261750 ENSG00000261750 HSD17B12 HSD17B12 IMPDH2 IMPDH2 EIF2B5 EIF2B5 EIF2S3 EIF2S3 EIF2B3 EIF2B3 EIF2B2 EIF2B2 CPS1 CPS1 EIF2S3L EIF2S3L EIF2B1 EIF2B1 EIF2B4 EIF2B4 CAD CAD DGCR14 DGCR14 UBC UBC IST1 IST1 HSDL1 HSDL1 HSD17B3 HSD17B3 EPB41L3 EPB41L3 EBNA1BP2 EBNA1BP2 DHRS7 DHRS7 UBE2F UBE2F
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
DHRS7dehydrogenase/reductase (SDR family) member 7 (339 aa)
HSDL1hydroxysteroid dehydrogenase like 1 (330 aa)
DGCR14DiGeorge syndrome critical region gene 14; May be involved in pre-mRNA splicing (476 aa)
EIF2S3eukaryotic translation initiation factor 2, subunit 3 gamma, 52kDa; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a re [...] (472 aa)
EIF2S1eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa; Functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a reaction [...] (315 aa)
EIF2AK4eukaryotic translation initiation factor 2 alpha kinase 4 (1649 aa)
CADcarbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; This protein is a "fusion" protein encoding four enzymatic activities of the pyrimidine pathway (GATase, CPSase, ATCase and DHOase) (2225 aa)
EIF2B2eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (351 aa)
UBE2Fubiquitin-conjugating enzyme E2F (putative); Accepts the ubiquitin-like protein NEDD8 from the UBA3- NAE1 E1 complex and catalyzes its covalent attachment to other proteins. The specific interaction with the E3 ubiquitin ligase RBX2, but not RBX1, suggests that the RBX2-UBE2F complex neddylates specific target proteins, such as CUL5 (185 aa)
EIF2B5eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (721 aa)
HSD17B12hydroxysteroid (17-beta) dehydrogenase 12; Catalyzes the transformation of estrone (E1) into estradiol (E2), suggesting a central role in estrogen formation. Its strong expression in ovary and mammary gland suggest that it may constitute the major enzyme responsible for the conversion of E1 to E2 in women. Also has 3-ketoacyl-CoA reductase activity, reducing both long chain 3-ketoacyl-CoAs and long chain fatty acyl-CoAs, suggesting a role in long fatty acid elongation (312 aa)
IMPDH2IMP (inosine 5’-monophosphate) dehydrogenase 2; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors (514 aa)
KARSlysyl-tRNA synthetase; Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction- the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages. Catalyzes the synthesis of diadenosine oligophosphate (Ap4A), a signaling molecule involved in the activation of MITF transcriptional activity. Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), th [...] (625 aa)
IST1increased sodium tolerance 1 homolog (yeast); Proposed to be involved in specific functions of the ESCRT machinery. Is required for efficient abscission during cytokinesis, but not for HIV-1 budding. The involvement in the MVB pathway is not established. Involved in recruiting VPS4A and/or VPS4B to the midbody of dividing cells (360 aa)
EPB41L3erythrocyte membrane protein band 4.1-like 3; Critical growth regulator in the pathogenesis of meningiomas (1087 aa)
UBCubiquitin C (685 aa)
EIF2B3eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (452 aa)
EIF2C1eukaryotic translation initiation factor 2C, 1; Required for RNA-mediated gene silencing (RNAi). Binds to short RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), and represses the translation of mRNAs which are complementary to them. Lacks endonuclease activity and does not appear to cleave target mRNAs. Also required for transcriptional gene silencing (TGS) of promoter regions which are complementary to bound short antigene RNAs (agRNAs) (857 aa)
EIF2S2eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a rea [...] (333 aa)
HSD17B3hydroxysteroid (17-beta) dehydrogenase 3; Favors the reduction of androstenedione to testosterone. Uses NADPH while the two other EDH17B enzymes use NADH (310 aa)
EIF2B4eukaryotic translation initiation factor 2B, subunit 4 delta, 67kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (543 aa)
CPS1carbamoyl-phosphate synthase 1, mitochondrial; Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell (1506 aa)
EBNA1BP2EBNA1 binding protein 2; Required for the processing of the 27S pre-rRNA (By similarity) (361 aa)
EIF2B1eukaryotic translation initiation factor 2B, subunit 1 alpha, 26kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (305 aa)
EIF2S3LPutative eukaryotic translation initiation factor 2 subunit 3-like protein ; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by wa [...] (472 aa)
ENSG00000261750IST1 homolog (106 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (56%)