Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
RTN4IP1 RTN4IP1 MECR MECR PPEF2 PPEF2 ALAS2 ALAS2 ABHD4 ABHD4 NDUFAB1 NDUFAB1 SPTLC1 SPTLC1 SPTLC2 SPTLC2 TAZ TAZ GCAT GCAT DHRS12 DHRS12 SPTLC3 SPTLC3 ALAS1 ALAS1 SLC27A6 SLC27A6 SLC27A2 SLC27A2 UBC UBC SLC27A1 SLC27A1 SLC27A3 SLC27A3 ACSL5 ACSL5 HSD17B7 HSD17B7 EHMT1 EHMT1 SLC27A4 SLC27A4 CH25H CH25H SLC27A5 SLC27A5 EHMT2 EHMT2 C2orf43 C2orf43
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa; Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity) (156 aa)
SPTLC2serine palmitoyltransferase, long chain base subunit 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate (562 aa)
C2orf43chromosome 2 open reading frame 43 (325 aa)
SLC27A1solute carrier family 27 (fatty acid transporter), member 1; Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivo [...] (646 aa)
HSD17B7hydroxysteroid (17-beta) dehydrogenase 7; Responsible for the reduction of the keto group on the C-3 of sterols (341 aa)
SLC27A6solute carrier family 27 (fatty acid transporter), member 6; Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. Thought to function as the predominant fatty acid protein transporter in heart (619 aa)
SPTLC1serine palmitoyltransferase, long chain base subunit 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1- SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isoz [...] (473 aa)
SLC27A5solute carrier family 27 (fatty acid transporter), member 5; Acyl-CoA synthetase involved in bile acid metabolism. Proposed to catalyze the first step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi by activating them to their CoA thioesters. Seems to activate secondary bile acids entering the liver from the enterohepatic circulation. In vitro, also activates 3-alpha,7- alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol (690 aa)
MECRmitochondrial trans-2-enoyl-CoA reductase; Catalyzes the reduction of trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. May have a role in the mitochondrial synthesis of fatty acids (373 aa)
SLC27A2solute carrier family 27 (fatty acid transporter), member 2; Acyl-CoA synthetase probably involved in bile acid metabolism. Proposed to activate C27 precurors of bile acids to their CoA thioesters derivatives before side chain cleavage via peroxisomal beta-oxidation occurs. In vitro, activates 3-alpha,7- alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol. Does not utilize C24 bile acids as substrates. In vitro, also activates long- and branched-chain fatty acids and may have additional roles in fat [...] (620 aa)
DHRS12dehydrogenase/reductase (SDR family) member 12; Putative oxidoreductase (By similarity) (271 aa)
PPEF2protein phosphatase, EF-hand calcium binding domain 2; May play a role in phototransduction. May dephosphorylate photoactivated rhodopsin. May function as a calcium sensing regulator of ionic currents, energy production or synaptic transmission (753 aa)
TAZtafazzin (292 aa)
SLC27A4solute carrier family 27 (fatty acid transporter), member 4; Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. Appears to be the principal fatty acid transporter in small intestinal enterocytes. Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids (By similarity) (643 aa)
ALAS1aminolevulinate, delta-, synthase 1 (640 aa)
ALAS2aminolevulinate, delta-, synthase 2 (587 aa)
UBCubiquitin C (685 aa)
ACSL5acyl-CoA synthetase long-chain family member 5; Acyl-CoA synthetases (ACSL) activate long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL5 may activate fatty acids from exogenous sources for the synthesis of triacylglycerol destined for intracellular storage (By similarity). Utilizes a wide range of saturated fatty acids with a preference for C16-C18 unsaturated fatty acids (By similarity). It was suggested that it may also stimulate fatty acid oxidation (By similarity). At the villus tip of the crypt-villus axis of the small intestine [...] (739 aa)
SLC27A3solute carrier family 27 (fatty acid transporter), member 3 (730 aa)
RTN4IP1reticulon 4 interacting protein 1; Appears to be a potent inhibitor of regeneration following spinal cord injury (396 aa)
CH25Hcholesterol 25-hydroxylase; Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25- hydroxycholesterol by macrophages may play a role in Leydig cell differentiation (272 aa)
EHMT2euchromatic histone-lysine N-methyltransferase 2 (1210 aa)
GCATglycine C-acetyltransferase (445 aa)
SPTLC3serine palmitoyltransferase, long chain base subunit 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, while the SPTLC1-SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference (552 aa)
ABHD4abhydrolase domain containing 4; Lysophospholipase selective for N-acyl phosphatidylethanolamine (NAPE). Contributes to the biosynthesis of N-acyl ethanolamines, including the endocannabinoid anandamide by hydrolyzing the sn-1 and sn-2 acyl chains from N-acyl phosphatidylethanolamine (NAPE) generating glycerophospho-N-acyl ethanolamine (GP-NAE), an intermediate for N-acyl ethanolamine biosynthesis. Hydrolyzes substrates bearing saturated, monounsaturated, polyunsaturated N-acyl chains. Shows no significant activity towards other lysophospholipids, including lysophosphatidylcholine, lys [...] (342 aa)
EHMT1euchromatic histone-lysine N-methyltransferase 1; Histone methyltransferase that specifically mono- and dimethylates ’Lys-9’ of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates ’Lys-27’ of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA [...] (1298 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (27%)