Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
INS INS ATP6V0B ATP6V0B TF TF ATP6V0E1 ATP6V0E1 ATP6V0E2 ATP6V0E2 PPA2 PPA2 ATP6V1D ATP6V1D ATP6V1E1 ATP6V1E1 PPA1 PPA1 INSR INSR ATP6V1H ATP6V1H ATP6V0C ATP6V0C LHPP LHPP ATP6V1A ATP6V1A TFRC TFRC ATP6V1B2 ATP6V1B2 ATP6V1F ATP6V1F UBC UBC UNK UNK UBE2D1 UBE2D1 UBE2V1 UBE2V1 UBE2C UBE2C UBXN7 UBXN7 UBE2B UBE2B TTLL12 TTLL12 ZRANB2 ZRANB2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
TTLL12tubulin tyrosine ligase-like family, member 12 (644 aa)
ATP6V1DATPase, H+ transporting, lysosomal 34kDa, V1 subunit D; Subunit of the peripheral V1 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity) (247 aa)
INSinsulin; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver (By similarity) (110 aa)
ATP6V1E1ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (226 aa)
UBE2Bubiquitin-conjugating enzyme E2B; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In association with the E3 enzyme BRE1 (RNF20 and/or RNF40), it plays a role in transcription regulation by catalyzing the monoubiquitination of histone H2B at ’Lys-120’ to form H2BK120ub1. H2BK120ub1 gives a specific tag for epigenetic transcriptional activation, elongation by RNA polymerase II, telomeric silencing, and is also a prerequisite for H3K4me and H3K79me formation. In vitro catalyzes ’Lys-11’-, as well as ’Lys-48’- and ’Lys-63’-linked polyubiquiti [...] (152 aa)
ATP6V1AATPase, H+ transporting, lysosomal 70kDa, V1 subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (617 aa)
ATP6V1B2ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (511 aa)
UNKunkempt homolog (Drosophila) (886 aa)
UBXN7UBX domain protein 7 (489 aa)
INSRinsulin receptor; Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src- homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the act [...] (1382 aa)
ATP6V0CATPase, H+ transporting, lysosomal 16kDa, V0 subunit c; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (155 aa)
UBE2V1ubiquitin-conjugating enzyme E2 variant 1 (170 aa)
PPA2pyrophosphatase (inorganic) 2 (334 aa)
UBCubiquitin C (685 aa)
UBE2Cubiquitin-conjugating enzyme E2C; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis. Acts by initiating ’Lys-11’-linked polyubiquitin chains on APC/C substrates, leading to the degradation of APC/C substrates by the proteasome and promoting mitotic exit (179 aa)
ATP6V1HATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates the ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes (483 aa)
TFRCtransferrin receptor (p90, CD71); Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin f [...] (760 aa)
LHPPphospholysine phosphohistidine inorganic pyrophosphate phosphatase; Phosphatase that hydrolyzes imidodiphosphate, 3- phosphohistidine and 6-phospholysine. Has broad substrate specificity and can also hydrolyze inorganic diphosphate, but with lower efficiency (By similarity) (270 aa)
ZRANB2zinc finger, RAN-binding domain containing 2; Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. May interfere with constitutive 5’- splice site selection (330 aa)
PPA1pyrophosphatase (inorganic) 1 (289 aa)
UBE2D1ubiquitin-conjugating enzyme E2D 1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 48’-linked polyubiquitination. Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP- induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and auto-ubiquitination of STUB1, TRAF6 and TRIM63/MURF1. Ubiquitinates STUB1-associated HSP90AB1 in vitro. Lacks inherent specificity for any particular lysine residue of ubiquitin. Essential for viral activation of IRF3. Mediates polyu [...] (147 aa)
TFtransferrin; Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation (698 aa)
ATP6V0E2ATPase, H+ transporting V0 subunit e2 (213 aa)
ATP6V1FATPase, H+ transporting, lysosomal 14kDa, V1 subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (147 aa)
ATP6V0E1ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e1; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (81 aa)
ATP6V0BATPase, H+ transporting, lysosomal 21kDa, V0 subunit b; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (205 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (41%)