Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
TCIRG1 TCIRG1 AK2 AK2 ATP6V0A1 ATP6V0A1 ATP6V0D2 ATP6V0D2 ATP6V1G3 ATP6V1G3 ATP6V0D1 ATP6V0D1 ATP6V1E2 ATP6V1E2 ATP6V0A2 ATP6V0A2 ATP6AP1L ATP6AP1L ATP5S ATP5S ATP5G3 ATP5G3 ATP6V1H ATP6V1H ATP5G1 ATP5G1 MT-ATP6 MT-ATP6 AK4 AK4 ATP5B ATP5B ATP5A1 ATP5A1 AK8 AK8 USMG5 USMG5 C14orf2 C14orf2 AK7 AK7 ATP5I ATP5I AK1 AK1 ATP5L2 ATP5L2 AK5 AK5 AK3 AK3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ATP5BATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is couple [...] (529 aa)
ATP6V0A1ATPase, H+ transporting, lysosomal V0 subunit a1; Required for assembly and activity of the vacuolar ATPase. Potential role in differential targeting and regulation of the enzyme for a specific organelle (By similarity) (838 aa)
TCIRG1T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3; Part of the proton channel of V-ATPases (By similarity). Seems to be directly involved in T-cell activation (830 aa)
AK7adenylate kinase 7; Adenylate kinase involved in maintaining ciliary structure and function (By similarity). Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (723 aa)
ATP6V1G3ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G3; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase (V-ATPase). V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (118 aa)
ATP5A1ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of [...] (553 aa)
ATP5G3ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9); Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is c [...] (142 aa)
ATP6V0D2ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d2; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity) (350 aa)
ATP6V0D1ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity) (351 aa)
AK8adenylate kinase 8; Adenylate kinase. Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (479 aa)
ATP6V1E2ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E2; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. This isoform is essential for energy coupling involved in acidification of acrosome (By similarity) (226 aa)
ATP5IATP synthase, H+ transporting, mitochondrial Fo complex, subunit E; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a [...] (69 aa)
ATP5SATP synthase, H+ transporting, mitochondrial Fo complex, subunit s (factor B); Involved in regulation of mitochondrial membrane ATP synthase. Necessary for H(+) conduction of ATP synthase. Facilitates energy-driven catalysis of ATP synthesis by blocking a proton leak through an alternative proton exit pathway (By similarity) (215 aa)
USMG5up-regulated during skeletal muscle growth 5 homolog (mouse); Plays a critical role in maintaining the ATP synthase population in mitochondria (58 aa)
AK4adenylate kinase 4; Involved in maintaining the homeostasis of cellular nucleotides by catalyzing the interconversion of nucleoside phosphates. Efficiently phosphorylates AMP and dAMP using ATP as phosphate donor, but phosphorylates only AMP when using GTP as phosphate donor (223 aa)
ATP6V0A2ATPase, H+ transporting, lysosomal V0 subunit a2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (856 aa)
AK5adenylate kinase 5; Active on AMP and dAMP with ATP as a donor. When GTP is used as phosphate donor, the enzyme phosphorylates AMP, CMP, and to a small extent dCMP (562 aa)
AK2adenylate kinase 2 (239 aa)
ATP5G1ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9); Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is c [...] (136 aa)
ATP6V1HATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates the ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes (483 aa)
MT-ATP6mitochondrially encoded ATP synthase 6 (226 aa)
AK1adenylate kinase 1; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism (194 aa)
ATP6AP1LATPase, H+ transporting, lysosomal accessory protein 1-like (224 aa)
AK3adenylate kinase 3; Involved in maintaining the homeostasis of cellular nucleotides by catalyzing the interconversion of nucleoside phosphates. Has GTP-AMP phosphotransferase and ITP-AMP phosphotransferase activities (227 aa)
C14orf2chromosome 14 open reading frame 2 (75 aa)
ATP5L2ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G2; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via [...] (100 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (54%)