Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
ADH1A ADH1A HSD17B6 HSD17B6 SDR16C5 SDR16C5 ADH1B ADH1B LRAT LRAT RETSAT RETSAT CYP26A1 CYP26A1 DHRS3 DHRS3 RDH8 RDH8 RDH12 RDH12 RDH10 RDH10
"RETSAT" - retinol saturase (all-trans-retinol 13,14-reductase) in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RETSATretinol saturase (all-trans-retinol 13,14-reductase); Retinol saturase carrying out the saturation of the 13- 14 double bond of all-trans-retinol to produce all-trans-13,14- dihydroretinol. Has activity toward all-trans-retinol as substrate. Does not use all-trans-retinoic acid nor 9-cis, 11-cis or 13-cis-retinol isomers as substrates. May play a role in the metabolism of vitamin A (By similarity) (610 aa)    
Predicted Functional Partners:
CYP26A1
cytochrome P450, family 26, subfamily A, polypeptide 1; Plays a key role in retinoic acid metabolism. Acts on retinoids, including all-trans-retinoic acid (RA) and its stereoisomer 9-cis-RA. Capable of both 4-hydroxylation and 18- hydroxylation. Responsible for generation of several hydroxylated forms of RA, including 4-OH-RA, 4-oxo-RA and 18-OH-RA (497 aa)
          score_image score_image   0.942
DHRS3
dehydrogenase/reductase (SDR family) member 3; Catalyzes the reduction of all-trans-retinal to all- trans-retinol in the presence of NADPH (302 aa)
score_image         score_image score_image   0.929
RDH12
retinol dehydrogenase 12 (all-trans/9-cis/11-cis); Exhibits an oxidoreductive catalytic activity towards retinoids. Most efficient as an NADPH-dependent retinal reductase. Displays high activity toward 9-cis and all-trans-retinol. Also involved in the metabolism of short-chain aldehydes. No steroid dehydrogenase activity detected. Might be the key enzyme in the formation of 11-cis-retinal from 11-cis-retinol during regeneration of the cone visual pigments (316 aa)
score_image         score_image score_image   0.923
LRAT
lecithin retinol acyltransferase (phosphatidylcholine--retinol O-acyltransferase); Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters. Retinyl esters are storage forms of vitamin A. LRAT plays a critical role in vision. It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis-retinaldehyde which is the chrom [...] (230 aa)
          score_image score_image   0.922
RDH8
retinol dehydrogenase 8 (all-trans); Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinal to all-trans-retinol. May play a role in the regeneration of visual pigment at high light intensity (By similarity) (311 aa)
score_image         score_image score_image   0.921
RDH10
retinol dehydrogenase 10 (all-trans); Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinol to all-trans-retinal. Has no detectable activity towards 11-cis-retinol, 9-cis-retinol and 13-cis-retinol (341 aa)
score_image         score_image score_image   0.921
ADH1A
alcohol dehydrogenase 1A (class I), alpha polypeptide (375 aa)
          score_image score_image   0.920
HSD17B6
hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse); NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17-beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3- alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is firs [...] (317 aa)
          score_image score_image   0.918
SDR16C5
short chain dehydrogenase/reductase family 16C, member 5; Oxidoreductase with strong preference for NAD. Active in both the oxidative and reductive directions. Oxidizes all-trans- retinol in all-trans-retinaldehyde. No activity was detected with 11-cis-retinol or 11-cis-retinaldehyde as substrates with either NAD(+)/NADH or NADP(+)/NADPH (309 aa)
score_image         score_image score_image   0.917
ADH1B
alcohol dehydrogenase 1B (class I), beta polypeptide (375 aa)
          score_image score_image   0.914
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (26%)