Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CLP1 CLP1 CPSF3 CPSF3 CSTF3 CSTF3 CSTF2 CSTF2 CSTF2T CSTF2T CSTF1 CSTF1 CPSF1 CPSF1 PAPOLA PAPOLA POLR2A POLR2A CPSF2 CPSF2 CPSF4 CPSF4
"CSTF3" - cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kDa in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CSTF3cleavage stimulation factor, 3’ pre-RNA, subunit 3, 77kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)    
Predicted Functional Partners:
CSTF2
cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
        score_image score_image score_image   0.999
CSTF1
cleavage stimulation factor, 3’ pre-RNA, subunit 1, 50kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. May be responsible for the interaction of CSTF with other factors to form a stable complex on the pre-mRNA (431 aa)
        score_image score_image score_image   0.999
CPSF1
cleavage and polyadenylation specific factor 1, 160kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (1443 aa)
        score_image score_image score_image   0.999
CPSF2
cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
      score_image score_image score_image score_image   0.998
CSTF2T
cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa, tau variant; May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity) (616 aa)
        score_image score_image score_image   0.998
POLR2A
polymerase (RNA) II (DNA directed) polypeptide A, 220kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the cen [...] (1970 aa)
      score_image score_image score_image score_image   0.998
CLP1
cleavage and polyadenylation factor I subunit 1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Appears to have roles in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex. Phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicin [...] (425 aa)
      score_image score_image score_image score_image   0.996
CPSF3
cleavage and polyadenylation specific factor 3, 73kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ to 3’ [...] (684 aa)
      score_image score_image score_image score_image   0.995
PAPOLA
poly(A) polymerase alpha; Polymerase that creates the 3’-poly(A) tail of mRNA’s. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus (745 aa)
        score_image score_image score_image   0.994
CPSF4
cleavage and polyadenylation specific factor 4, 30kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U) (269 aa)
        score_image score_image score_image   0.989
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (51%)