Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
UBC UBC KCNN4 KCNN4 KCNB1 KCNB1 KCNA5 KCNA5 KCNA3 KCNA3 KCNK5 KCNK5 KCNC3 KCNC3 KCND3 KCND3 KCNJ2 KCNJ2 KCND2 KCND2 KCNJ16 KCNJ16
"KCNK5" - potassium channel, subfamily K, member 5 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KCNK5potassium channel, subfamily K, member 5; pH-dependent, voltage insensitive, outwardly rectifying potassium channel. Outward rectification is lost at high external K(+) concentrations (499 aa)    
Predicted Functional Partners:
KCND3
potassium voltage-gated channel, Shal-related subfamily, member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits (655 aa)
            score_image   0.583
KCNA5
potassium voltage-gated channel, shaker-related subfamily, member 5; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. This channel displays rapid activation and slow inactivation. May play a role in regulating the secretion of insulin in normal pancreatic islets. Isoform 2 exhibits a voltage-dependent recovery from inacti [...] (613 aa)
            score_image   0.532
KCNB1
potassium voltage-gated channel, Shab-related subfamily, member 1; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient (858 aa)
            score_image   0.496
KCNC3
potassium voltage-gated channel, Shaw-related subfamily, member 3; This protein mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (757 aa)
            score_image   0.486
KCND2
potassium voltage-gated channel, Shal-related subfamily, member 2; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits (630 aa)
            score_image   0.485
KCNJ16
potassium inwardly-rectifying channel, subfamily J, member 16; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ16 may be involved in the regulation of fluid and pH balance (418 aa)
            score_image   0.483
UBC
ubiquitin C (685 aa)
        score_image       0.483
KCNJ2
potassium inwardly-rectifying channel, subfamily J, member 2; Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by inter [...] (427 aa)
            score_image   0.474
KCNN4
potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4; Forms a voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization which promotes calcium influx. Required for maximal calcium influx and proliferation during the reactivation of naive T-cells. The channel is blocked by clotrimazole and charybdotoxin but is insensitive to apamin (427 aa)
            score_image   0.468
KCNA3
potassium voltage-gated channel, shaker-related subfamily, member 3; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (575 aa)
            score_image   0.459
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (43%)